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Looking	back…

• Representation	of	joint	distributions

• Conditional/marginal	independence
* Directed	vs	undirected

• Probabilistic	inference
* Computing	other	distributions	from	joint	

• Statistical	inference
* Learn	parameters	from	(missing)	data

• Today:	putting	these	all	into	practice…
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Hidden	Markov	Models

Model	of	choice	for	sequential	data.	A	form	of	
clustering	(or	dimensionality	reduction)	for	discrete	

time	series.
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The	HMM	(and	Kalman Filter)

• Sequential	observed	outputs	from	hidden	state
* states	take	discrete	values	(i.e.,	clusters)
* assumes	discrete	time	steps	1,	2,	…,	T

• The	Kalman filter	same	with	continuous	Gaussian	r.v.’s
* i.e.,	dimensionality	reduction,	but	with	temporal	dynamic
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HMM	Applications

• NLP	– part	of	speech	tagging:	given	words	in	sentence,	
infer	hidden	parts	of	speech

“I	love	Machine	Learning”	à noun,	verb,	noun,	noun

• Speech	recognition:	given	waveform,	determine	
phonemes

• Biological	sequences:	classification,	search,	alignment

• Computer	vision:	identify	who’s	walking	in	video,	tracking
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Formulation

• Formulated	as	directed	PGM
* therefore	joint	expressed	as

* bold variables	are	shorthand	for	vector	of	T values	

• Parameters	(for	homogenous	HMM)
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P (o,q) = P (q1)P (o1|q1)
TY

i=2

P (qi|qi�1)P (oi|qi)
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all	other	o’s	
excluding	i

Independence

• Graph	encodes	independence	btw	RVs
* conditional	independence:	

oi⟘ o\i |	qi
* state	qi must	encode	all	sequential	context

• Markov	blanket	is	local	
* for	oi blanket	is	qi
* for	qi blanket	is	{oi	,	qi-1, qi+1}
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Fundamental	HMM	Tasks
HMM	Task PGM	Task

Evaluation. Given	an	HMM	𝜇 and	
observation	sequence	𝒐,	determine	
likelihood	Pr	(𝒐|𝜇)

Probabilistic	
inference

Decoding. Given	an	HMM	𝜇 and	
observation	sequence	𝒐,	determine	most	
probable	hidden	state	sequence	𝒒

MAP	point
estimate

Learning. Given	an	observation	sequence	𝒐
and	set	of	states,	learn	parameters	𝐴, 𝐵, Π

Statistical	
inference
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“Evaluation”	a.k.a.	marginalisation

• Compute	prob.	of	observations	o by	summing	out	q

• Make	this	more	efficient	by	moving	the	sums

• Deja	vu?	Maybe	we	could	do	var.	elimation…
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P (o|µ) =
X

q

P (o,q|µ)

=
X
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Elimination	=	Backward	Algorithm
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P (o|µ) =
X

q1

P (q1)P (o1|q1)
X

q2

P (q2|q1)P (o2|q2) . . .
X

qT

P (qT |qT�1)P (oT |qT )

mT!T�1(qT�1)

m2!1(q1)

P (o|µ) =
X

q1

P (q1)P (o1|q1)m2!1(q1)

Eliminate	qT
…

Eliminate	q2
“Eliminate”	q1

qT…q1 q2
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Elimination	=	Forward	Algorithm
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Eliminate	q1
…

Eliminate	qT-1
“Eliminate”	qT

qT…q1 q2
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P (oT |qT )
X

qT�1

P (qT |qT�1)P (oT |qT ) . . .
X

q1

P (q2|q1)P (q1)P (o1|q1)

m1!2(q2)
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X
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P (oT |qT )mT�1!T (qT )
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Forward-Backward

• Both	algorithms	are	just	variable	elimination	
using different orderings	
* qT … q1 à backward	algorithm
* q1 … qT à forward	algorithm
* both	have	time	complexity	O(Tl2) where	l is	the	label	set

• Can	use	either	to	compute	P(o)
* but	even	better,	can	use	the	m	values	to	compute	
marginals (and	pairwise	marginals over	qi,	qi+1)
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P (qi|o) =
1

P (o)
mi�1!i(qi)P (oi|qi)mi+1!i(qi)

forward backward



Lecture	24Statistical	Machine	Learning	(S2	2017)

Statistical	Inference	(Learning)

• Learn	parameters	𝛍 =	(A,	B,	𝛑),	given	observation	
sequence	o

• Called	“Baum	Welch”	algorithm	which	uses	EM to	
approximate	MLE,	argmax𝛍 P(o|𝛍):
1. initialise 𝛍1,	let	i=1
2. compute	expected	marginal	distributions	

P(qt|o, 𝛍i)	for	all	t;	and	P(qt-1,qt|o, 𝛍i)	for	t=2..T	
3. fit	model	𝛍i+1 based	on	expectations
4. repeat	from	step	2,	with	i=i+1

• Expectations	computed	using	forward-backward
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Message	Passing

Sum-product	algorithm	for	efficiently	computing	
marginal	distributions	over	trees.	An	extension	of	

variable	elimination	algorithm.
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Inference	as	message	passing

• Each	m	can	be	considered	as	a	message which	
summarises the	effect	of	the	rest	of	the	graph	on	the	
current	node	marginal.
* Inference	=	passing	messages	between	all	nodes
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q1 q2 q4q3

m1!2

m3!2
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Inference	as	message	passing

• Messages	vector	valued,	i.e.,	function	of	target	label

• Messages	defined	recursively:	left	to	right,	or	right	to	
left
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q1 q2 q4q3

m1!2

m3!2

m4!3
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Sum-product	algorithm

• Application	of	message	passing	to	more	general	
graphs
* applies	to	chains,	trees	and	poly-trees	
(directed	PGMs	with	>1	parent)

* ‘sum-product’	derives	from:
• product	=	product	of	incoming	messages
• sum =	summing	out	the	effect	of	RV(s)	aka	elimination

• Algorithm	supports	other	operations	(semi-rings)
* e.g.,	max-product,	swapping	sum	for	max
* Viterbi algorithm	is	the	max-product	variant	of	the	forward	
algorithm	for	HMMs,	solves	the	argmaxqP(q|o)
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Application	to	Directed	PGMS
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CTL FG

GRLFA

AS

CTL FG

GRLFA

AS

CTL FG

GRLFA

AS

Directed	PGM Undirected
”moralised”
PGM

Factor	graph
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f2(CTL,GRL,FG) = P (GRL|CTL, FG)

f1(CTL) = P (CTL)

CTL FG

GRLFA

AS

f1
f2

f3f4
f5

Factor	graphs

FG	=	A	bipartite	graph,	with	factors	
(functions)	and	RVs

Directed	PGMs	result	in	tree-structured	FG



Lecture	24Statistical	Machine	Learning	(S2	2017)

20

Factor	graph	for	the	HMM

q1 q2 q3 q4

P (q1)P (o1|q1)

P (q2|q1)

P (o2|q2)
P (o3|q3)

P (o4|q4)

P (q4|q3)P (q3|q2)

Effect	of	observed	nodes	incorporated	into	unary	factors
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• Two	types	of	messages	:
* between	factors	and	RVs;	and	between	RVs	and	factors
* summarise a	complete	sub-graph

• E.g.,

• Structure	inference	as	“gather-and-distribute”
* gather	messages	from	leaves	of	tree	towards	root
* then	propagate	message	back	down	from	root	to	leaves
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Sum-Product	over	Factor	Graphs

mf2!GRL(GRL) =
X

CTL

X

FG

f2(GRL,CTL, FG)mCTL!f2(CTL)mFG!f2(FG)
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Undirected	PGM	analogue:	CRFs

• Conditional	Random	Field:	Same	model	applied	to
sequences
* observed	outputs	are	words,	speech,	amino	acids	etc
* states	are	tags:	part-of-speech,	phone,	alignment…
* shared	inference	algo.,	i.e.,	sum-product	/	max-product

• CRFs	are	discriminative,	model	P(q|o)	
* versus	HMMs	which	are	generative,	P(q,o)
* undirected	PGM	more	general	and	expressive

22
𝑞1 𝑞2𝑞3𝑞4

𝑜1 𝑜2𝑜3𝑜4



Lecture	24Statistical	Machine	Learning	(S2	2017)

Summary

• HMMs	as	example	PGMs
* formulation	as	PGM
* independence	assumptions
* probabilistic	inference	using	forward-backward
* statistical	inference	using	expectation	maximisation

• Message	passing:	general	inference	method	for	
U-PGMs
* sum-product	&	max-product
* factor	graphs

23


