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Probabilistic	inference	on	PGMs

Computing	marginal	and	conditional	distributions	from	the	
joint	of	a	PGM	using	Bayes	rule	and	marginalisation.

This	deck:	how	to	do	it	efficiently.

Based	on	Andrew	Moore’s	tutorial	slides	&	Ben	Rubinstein’s	slides
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Two	familiar	examples

• Naïve	Bayes	(frequentist/Bayesian)
* Chooses	most	likely	class	given	data

* Pr 𝑌|𝑋&, … , 𝑋) = +, -,./,…,.0
+, ./,…,.0

= +, -,./,…,.0
∑ +, -23,./,…,.0�
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• Data	𝑋|𝜃~𝑁 𝜃, 1 with	prior	𝜃~𝑁 0,1 (Bayesian)
* Given	observation	𝑋 = 𝑥 update	posterior

* Pr 𝜃|𝑋 = +, <,.
+, .

= +, <,.
∑ +, <,.�
=

• Joint	+	Bayes	rule	+	marginalisation	à anything
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Nuclear	power	plant

• Alarm	sounds;	meltdown?!

• Pr 𝐻𝑇 𝐴𝑆 = 𝑡 = +, CD,	FG2H
+,(FG2H)

=
∑ +, FG2H,	KF,	CL,	KL,	CD�
MN,	ON,	MP

∑ +, FG2H,	KF,	CQ,	KL,	CDR�
MN,	ON,	MP,	OSR

• Numerator	(denominator	similar)
expanding	out	sums,	joint			summing	once	over	25 table

=T T T Pr 𝐻𝑇 Pr 𝐻𝐺|𝐻𝑇, 𝐹𝐺 Pr 𝐹𝐺 Pr 𝐴𝑆 = 𝑡|𝐹𝐴,𝐻𝐺 Pr 𝐹𝐴
�

KF

�

CL

�

KL

distributing	the	sums	as	far	down	as	possible			summing	over	several	smaller	tables

= Pr 𝐻𝑇 T Pr 𝐹𝐺 T Pr 𝐻𝐺|𝐻𝑇, 𝐹𝐺 T Pr 𝐹𝐴 Pr 𝐴𝑆 = 𝑡|𝐹𝐴,𝐻𝐺
�

KF

�

CL

�

KL
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Nuclear	power	plant	(cont.)
= Pr 𝐻𝑇 ∑ Pr 𝐹𝐺 ∑ Pr 𝐻𝐺|𝐻𝑇, 𝐹𝐺 ∑ Pr 𝐹𝐴 Pr 𝐴𝑆 = 𝑡|𝐹𝐴,𝐻𝐺�

KF
�
CL

�
KL

= Pr 𝐻𝑇 ∑ Pr 𝐹𝐺 ∑ Pr 𝐻𝐺|𝐻𝑇, 𝐹𝐺 ∑ Pr 𝐹𝐴 𝑚FG 𝐹𝐴,𝐻𝐺�
KF

�
CL

�
KL

= Pr 𝐻𝑇 ∑ Pr 𝐹𝐺 ∑ Pr 𝐻𝐺|𝐻𝑇, 𝐹𝐺 𝑚KF 𝐻𝐺�
CL

�
KL

= Pr 𝐻𝑇 ∑ Pr 𝐹𝐺 𝑚CL 𝐻𝑇, 𝐹𝐺�
KL

= Pr 𝐻𝑇 𝑚KL 𝐻𝑇
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eliminate	AS:	since	AS observed,	really	a	no-op

eliminate	FA:	multiplying	1x2	by	2x2

eliminate	HG:	multiplying	2x2x2	by	2x1

eliminate	FG:	multiplying	1x2	by	2x2

Multiplication
of	tables,	followed

by	summing,	is	actually
matrix	multiplication

FA
f t
0.6 0.4

HG
f t

FA
f 1.0 0
t 0.8 0.2

X𝑚KF 𝐻𝐺 =
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Elimination	algorithm
Eliminate (Graph 𝐺, Evidence nodes 𝐸, Query nodes 𝑄)

1. Choose node ordering 𝐼 such that 𝑄 appears last

2. Initialise empty list active

3. For each node 𝑋𝑖 in 𝐺
a) Append Pr 𝑋𝑖	 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) to active

4. For each node 𝑋𝑖 in 𝐸
a) Append 𝛿(𝑋𝑖, 𝑥𝑖) to active

5. For each 𝑖 in 𝐼
a) potentials = Remove tables referencing 𝑋𝑖 from active

b) 𝑁𝑖 = nodes other than 𝑋𝑖 referenced by tables

c) Table 𝜙𝑖(𝑋𝑖, 𝑋de) = product of tables

d) Table 𝑚𝑖 𝑋de = ∑ 𝜙𝑖(𝑋𝑖, 𝑋de)
�
.e

e) Append 𝑚𝑖(𝑋de) to active

6. Return Pr	(𝑋𝑄|𝑋𝐸 = 𝑥𝐸) = 𝜙𝑄(𝑋𝑄)/∑ 𝜙𝑄(𝑋𝑄)�
.g
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Green	background	
= Slide	just	for	fun!
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Runtime	of	elimination	algorithm

• Each	step	of	elimination
* Removes	a	node
* Connects	node’s	remaining	neighbours

à forms	a	clique	in	the	“reconstructed”	graph
(cliques	are	exactly	r.v.’s involved	in	each	sum)

• Time	complexity	exponential	in	largest	clique

• Different	elimination	orderings	produce	different	cliques
* Treewidth:	minimum	over	orderings	of	the	largest	clique
* Best	possible	time	complexity	is	exponential	in	the	treewidth
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PGM	after	successive	eliminations “reconstructed”	graph
From	process	called
moralisation
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Probabilistic	inference	by	simulation

• Exact	probabilistic	inference	can	be	expensive/impossible

• Can	we	approximate	numerically?

• Idea:	sampling	methods
* Cheaply	sample	from	desired	distribution
* Approximate	distribution by	histogram	of	samples
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Monte	Carlo	approx probabilistic	inference

• Algorithm:	sample	once	from	joint
1. Order	nodes’	parents	before	children	(topological	order)
2. Repeat

a) For	each	node	𝑋𝑖
i. Index	into	Pr	(𝑋𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋h)) with	parents’	values
ii. Sample	Xi from	this	distribution

b) Together	𝑿 = (𝑋1, … , 𝑋𝑑) is	a	sample	from	the	joint

• Algorithm:	sampling	from	Pr	(𝑋k|𝑋l = 𝑥𝐸)
1. Order	nodes’	parents	before	children
2. Initialise	set	𝑆 empty;	Repeat

1. Sample	𝑿 from	joint
2. If	𝑋𝐸 = 𝑥𝐸 then	add	𝑋𝑄 to	𝑆

3. Return:	Histogram	of	𝑆,	normalising	counts	via	divide	by	|𝑆|

• Sampling++:	Importance	weighting,	Gibbs,	Metropolis-Hastings
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Alternate	forms	of	probabilistic	inference

• Elimination	algorithm	produces	single	marginal

• Sum-product algorithm	on	trees
* 2x	cost,	supplies	all	marginals
* Name:	Marginalisation	is	just	sum of	product of	tables
* “Identical”	variants:	Max-product,	for	MAP	estimation

• In	general	these	are	message-passing	algorithms
* Can	generalise	beyond	trees	(beyond	scope):
junction	tree	algorithm,	loopy	belief	propagation

• Variational	Bayes:	approximation	via	optimisation
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Summary

• Probabilistic	inference	on	PGMs
* What	is	it	and	why	do	we	care?
* Elimination	algorithm;	complexity	via	cliques
* Monte	Carlo	approaches	as	alternate	to	exact	integration
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