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Independence

PGMs	encode	assumption	of	statistical	
independence	between	variables.

Critical	to	understanding	the	capabilities	of	a	
model,	and	for	efficient	inference.
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Recall:	Directed	PGM
• Nodes

• Edges	(acyclic)

• Random	variables

• Conditional	dependence
* Node	table:	Pr 𝑐ℎ𝑖𝑙𝑑|𝑝𝑎𝑟𝑒𝑛𝑡𝑠
* Child	directly	depends	on	

parents

• Joint	factorisation
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Pr 𝑋1, 𝑋3, … , 𝑋5 = ∏ Pr 𝑋8|𝑋9 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋8)5
8=1

Graph	encodes:
• independence	assumptions
• parameterisation of	CPTs
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Independence relations	(D-separation)
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• Important	independence	relations	between	RV’s
* Marginal independence P(X,	Y)	=	P(X)	P(Y)
* Conditional	independence P(X,	Y	|	Z)	=	P(X	|	Z)	P(Y	|	Z)

• Notation	A	⊥	B		| C	:
* RVs	in	set	A	are	independent	of	RVs	in	set	B,	when	given	
the	values	of	RVs	in	C.

* Symmetric:	can	swap	roles	of	A	and	B
* A	⊥	B		denotes	marginal	independence,	C	=	∅

• Independence	captured	in	graph	structure
* Caveat:	dependence	does	not	follow	in	general	when	X	
and	Y are	not	independent
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• Consider	graph	fragment

• What	[marginal]	independence	relations	hold?
* X	⟘ Y?	

Yes	− P(X,	Y)	=	P(X)	P(X)

• What	about	X	⟘ Z,	where	
Z	connected	to	Y?

Marginal	Independence

5
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• Consider	graph	fragment

• What	[marginal]	independence	relations	hold?
* X	⟘ Z?	

No −	𝑃 𝑋, 𝑍 = ∑ 𝑃 𝑋 𝑃 𝑌 𝑃(𝑍|𝑋, 𝑌)�
J

* X	⟘ Y?	
Yes	−	𝑃 𝑋, 𝑌 	= ∑ 𝑃 𝑋 𝑃 𝑌 𝑃 𝑍 𝑋, 𝑌 	�

K
= 𝑃 𝑋 𝑃(𝑌)

Marginal	Independence
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Marginal	independence	
denoted	X⊥Y
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Marginal	Independence
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Z

Are	X	and	Y	marginally	dependent?	(X	⟘ Y?)

X Y

Z

𝑃 𝑋, 𝑌 	= ∑ 𝑃 𝑍 𝑃 𝑋 𝑍 𝑃 𝑌|𝑍�
K … No

𝑃 𝑋, 𝑌 	= ∑ 𝑃 𝑋 𝑃 𝑍 𝑋 𝑃 𝑌|𝑍�
K ...	No
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Marginal	Independence

• Marginal	independence	can	be	read	off	graph
* however,	must	account	for	edge	directions
* relates	(loosely)	to	causality:	
if	edges	encode	causal	links,	can	X	affect	(cause)	Y?

• General	rules,	X	and	Y	are	linked	by:
* no	edges,	in	any	direction	à independent
* intervening	node	with	incoming	edges	from	X	and	Y	
(aka	head-to-head)	à independent

* head-to-tail,	tail-to-tailà not	(necessarily)	independent

• … generalises	to	longer	chains	of	intermediate	nodes	
(coming)
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Conditional	independence

• What	if	we	know	the	value	of	some	RVs?	How	does	
this	affect	the	in/dependence	relations?

• Consider	whether	X⊥Y 𝄅Z in	the	canonical	graphs

* Test	by	trying	to	show	P(X,Y|Z)	=	P(X|Z)	P(Y|Z).

9

X Y

Z

X Y

Z

X Y

Z



Lecture	21Statistical	Machine	Learning	(S2	2017)

Conditional	independence
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P (X,Y |Z) =
P (Z)P (X|Z)P (Y |Z)

P (Z)

= P (X|Z)P (Y |Z)

X Y

Z

P (X,Y |Z) =
P (X)P (Z|X)P (Y |Z)

P (Z)

=
P (X|Z)P (Z)P (Y |Z)

P (Z)

= P (X|Z)P (Y |Z)
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Conditional	independence

• So	far,	just	graph	separation… Not	so	fast!
* cannot	factorise	the	last
canonical	graph

• Known	as	explaining	away:
value	of	Z	can	give	information	
linking	X	and	Y
* E.g.,	X	and	Y	are	binary	coin	flips,	and	Z	is	whether	they	
land	the	same	side	up.	Given	Z,	then	X	and	Y	become	
completely	dependent	(deterministic).

* A.k.a.	Berkson's paradox

N.b.,	Marginal	dependence	≠	conditional	independence! 11
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Explaining	away

• The	washing	has	fallen	off	the	line	
(W).	Was	it	aliens	(A)	playing?	Or	
next	door’s	dog	(D)?

• Results	in	conditional	posterior
* P(A=1|W=1)	=	0.004
* P(A=1|D=1,W=1)	=	0.003
* P(A=1|D=0,W=1)	=	0.005
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A D P(W=1					
|A,D)

0 0 0.1

0 1 0.3

1 0 0.5

1 1 0.8

A Prob
0 0.999
1 0.001

D Prob
0 0.9
1 0.1

A D
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Explaining	away	II

• Explaining	away	also	occurs	for	
observed	children	of	the	head-head	
node
* attempt	factorise	to	test	A⊥D	𝄅 G
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G

P (A,D|G) =
X

W

P (A)P (D)P (W |A,D)P (G|W )

= P (A)P (D)P (G|A,D)
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“D-separation”	Summary

• Marginal	and	cond.	independence	can be	read	off	
graph	structure
* marginal	independence	relates	(loosely)	to	causality:	
if	edges	encode	causal	links,	can	X	affect	(cause	or	be	
caused	by)	Y?

* conditional	independence	less	intuitive

• How	to	apply	to	larger	graphs?
* based	on	paths	separating	nodes,	i.e.,	do	they	contain		
nodes	with	head-to-head,	head-to-tail	or	tail-to-tail	links?

* can	all	[undirected!]	paths	connecting	two	nodes	be	
blocked	by	an	independence	relation?
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D-separation	in	larger	PGM

• Consider	pair	of	nodes
FA	⊥ FG?

Paths:
FA	– CTL	– GRL	– FG	
FA	– AS	– GRL	– FG

• Paths	can	be	blocked	by	independence

• More	formally	see	“Bayes	Ball”	algorithm	which	
formalises	notion	of	d-separation	as	reachability	in	
the	graph,	subject	to	specific	traversal	rules.

15
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What’s	the	point	of	d-separation?

• Designing	the	graph
* understand	what	independence	assumptions	are	
being	made;	not	just	the	obvious	ones

* informs	trade-off	between	expressiveness	and	complexity	

• Inference	with	the	graph
* computing	of	conditional	/	marginal	distributions	must	
respect	in/dependences	between	RVs

* affects	complexity	(space,	time)	of	inference
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Markov	Blanket

• For	an	RV	what	is	the	minimal	set	of	other	RVs	that	
make	it	conditionally	independent	from	the	rest	of	
the	graph?
* what	conditioning	variables	can	be	safely	dropped	from	
P(Xj |	X1,	X2,	…,	Xj-1,	Xj+1, …,	Xn)?

• Solve	using	d-separation	rules	from	graph

• Important	for	predictive	inference	
(e.g.,	in	pseudolikelihood,	Gibbs	sampling,	etc)
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Undirected	PGMs

Undirected	variant	of	PGM,	parameterised	by	
arbitrary	positive	valued	functions	of	the	variables,	

and	global	normalisation.
A.k.a.	Markov	Random	Field.

18
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Undirected	vs	directed

Undirected	PGM

• Graph
* Edges	undirected

• Probability
* Each	node	a	r.v.
* Each	clique	C has	“factor”	
ψT 𝑋9: 𝑗 ∈ 𝐶 ≥ 0

* Joint	∝ product	of	factors

Directed	PGM

• Graph
* Edged	directed

• Probability
* Each	node	a	r.v.
* Each	node	has	conditional	
𝑝 𝑋8|𝑋9 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋8)

* Joint	= product	of	cond’ls

19

Key	difference	=	normalisation
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Undirected	PGM	formulation

• Based	on	notion	of	
* Clique: a	set	of	fully	connected	
nodes	(e.g.,	A-D,	C-D,	C-D-F)

* Maximal	clique:	largest	cliques	in	
graph	(not	C-D,	due	to	C-D-F)

• Joint	probability	defined	as

* where	ψ is	a	positive	function	and	Z	is	the	normalising
‘partition’	function

20

A E

DB

C

F

P (a, b, c, d, e, f) =
1

Z
 1(a, b) 2(b, c) 3(a, d) 4(d, c, f) 5(d, e)

Z =
X

a,b,c,d,e,f

 1(a, b) 2(b, c) 3(a, d) 4(d, c, f) 5(d, e)
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d-separation	in	U-PGMs

• Good	news!	Simpler	dependence	semantics
* conditional	independence	relations	=	graph	connectivity
* if	all	paths	between	nodes	in	set	X	and	Y	pass	through	an	
observed	nodes	Z	then	X⊥ Y	𝄅 Z

• For	example	B⊥ D	𝄅 {A,	C}

• Markov blanket of	node =	its
immediate neighbours
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Directed	to	undirected	

• Directed	PGM	formulated	as

where	𝛑 indexes	parents.	

• Equivalent	to	U-PGM	with
* each	conditional	probability	term	is	included	in	one	factor	
function,	ψc

* clique	structure	links	groups	of	variables,	i.e.,
* normalisation term	trivial,	Z	=	1
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{{Xi} [X⇡i , 8i}

P (X1, X2, . . . , Xk) =
kY

i=1

Pr(Xi|X⇡i)
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1. copy	nodes

2. copy	edges,	undirected

3. ‘moralise’	parent	nodes
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Why	U-PGM?

• Pros
* generalisation of	D-PGM
* simpler	means	of	modelling	without	the	need	for	per-
factor	normalisation

* general	inference	algorithms	use	U-PGM	representation	
(supporting	both	types	of	PGM)

• Cons
* (slightly)	weaker	independence
* calculating	global	normalisation term	(Z)	intractable in	
general	(but	tractable	for	chains/trees,	e.g.,	CRFs)
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Summary

• Notion	of	independence,	‘d-separation’
* marginal	vs	conditional	independence
* explaining	away,	Markov	blanket
* undirected	PGMs	&	relation	to	directed	PGMs

• Share	common	training	&	prediction	algorithms	
(coming	up	next!)
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