COMP90051 Statistical Machine Learning

Semester 2, 2016 Lecturer: Trevor Cohn

20. PGM Representation

Next Lectures

- Representation of joint distributions
- Conditional/marginal independence
 - Directed vs undirected
- Probabilistic inference
 - * Computing other distributions from joint
- Statistical inference
 - Learn parameters from (missing) data

Probabilistic Graphical Models

Marriage of graph theory and probability theory. Tool of choice for Bayesian statistical learning.

> We'll stick with easier discrete case, ideas generalise to continuous.

Motivation by practical importance

- Many applications
 - * Phylogenetic trees
 - Pedigrees, Linkage analysis
 - * Error-control codes
 - * Speech recognition
 - * Document topic models
 - * Probabilistic parsing
 - Image segmentation

*

 Unifies many previouslydiscovered algorithms

- * HMMs
- Kalman filters
- * Mixture models
- * LDA
- * MRFs
- * CRF
- Logistic, linear regression

Motivation by way of comparison

Bayesian statistical learning

- Model joint distribution of X's,Y and parameter r.v.'s
 - "Priors": marginals on parameters
- Training: update prior to posterior using observed data
- Prediction: output posterior, or some function of it (MAP)

PGMs aka "Bayes Nets"

- Efficient joint representation
 - Independence made explicit
 - Trade-off between expressiveness and need for data, easy to make
 - Easy for practitioners to model
- Algorithms to fit parameters, compute marginals, posterior

Everything Starts at the Joint Distribution

- All joint distributions on discrete r.v.'s can be represented as tables
- #rows grows exponentially with #r.v.'s
- Example: Truth Tables
 - * *M* Boolean r.v.'s require 2^{M} -1 rows
 - Table assigns probability per row

The Good: What we can do with the joint

- **Probabilistic inference** from joint on r.v.'s
 - * Computing any other distributions involving our r.v.'s
- Pattern: want a distribution, have joint; use:
 Bayes rule + marginalisation
- Example: naïve Bayes classifier
 - * Predict class y of instance x by maximising

$$\Pr(Y = y | \mathbf{X} = \mathbf{x}) = \frac{\Pr(Y = y, \mathbf{X} = \mathbf{x})}{\Pr(X = \mathbf{x})} = \frac{\Pr(Y = y, \mathbf{X} = \mathbf{x})}{\sum_{y} \Pr(X = \mathbf{x}, Y = y)}$$

Recall: *integration (over parameters)* continuous equivalent of sum (both referred to as marginalisation)

The Bad & Ugly: Tables waaaaay too large!!

- The Bad: Computational complexity
 - * Tables have exponential number of rows in number of r.v.'s
 - * Therefore \rightarrow poor space & time to marginalise
- The Ugly: Model complexity
 - Way too flexible
 - * Way too many parameters to fit
 → need lots of data OR will overfit
- Antidote: assume independence!

Α	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	?

Example: You're late!

- Modeling a tardy lecturer. Boolean r.v.'s
 - * T: Trevor teaches the class
 - * S: It is sunny (o.w. bad weather)
 - L: The lecturer arrives late (o.w. on time)

- Assume: Trevor sometimes delayed by bad weather, Trevor more likely late than co-lecturer
 - * $\Pr(S|T) = \Pr(S), \Pr(S) = 0.3 \Pr(T) = 0.6$
- Lateness not independent on weather, lecturer
 - * Need Pr(L|T = t, S = s) for all combinations
- Need just 6 parameters

Independence: not a dirty word

Lazy Lecturer Model	Model details	# params
Our model with ST independence	Pr(S, T) factors to $Pr(S) Pr(T)$	2
Our moder with 5, 1 mdependence	Pr(L T, S) modelled in full	4
Assumption-free model	Pr(<i>L</i> , <i>T</i> , <i>S</i>) modelled in full	7

- Independence assumptions
 - * Can be reasonable in light of domain expertise
 - * Allow us to factor \rightarrow Key to tractable models

Factoring Joint Distributions

- Chain Rule: for any ordering of r.v.'s can always factor: $Pr(X_1, X_2, ..., X_k) = \prod_{i=1}^k Pr(X_i | X_{i+1}, ..., X_k)$
- Model's independence assumptions correspond to
 - Dropping conditioning r.v.'s in the factors!
 - Example unconditional indep.: $Pr(X_1|X_2) = Pr(X_1)$
 - Example conditional indep.: $Pr(X_1|X_2, X_3) = Pr(X_1|X_2)$
- Example: independent r.v.'s $Pr(X_1, ..., X_k) = \prod_{i=1}^k Pr(X_i)$
- Simpler factors speed inference and avoid overfitting

Directed PGM

- Nodes
- Edges (acyclic)

- Random variables
- Conditional dependence
 - * Node table: Pr(child|parents)
 - Child directly depends on parents
- Joint factorisation

 $\Pr(X_1, X_2, \dots, X_k) = \prod_{i=1}^k \Pr(X_i | X_j \in parents(X_i))$

Tardy Lecturer Example

 $\Pr(S)$ $\Pr(T)$

 $\Pr(L|S,T)$

Example: Nuclear power plant

- Core temperature
 → Temperature Gauge
 → Alarm
- Model uncertainty in monitoring failure
 - GRL: gauge reads low
 - * CTL: core temperature low
 - * FG: faulty gauge
 - * FA: faulty alarm
 - * AS: alarm sounds
- PGMs to the rescue!

Joint Pr(*CTL*, *FG*, *FA*, *GRL*, *AS*) given by

Pr(AS|FA, GRL) Pr(FA) Pr(GRL|CTL, FG) Pr(CTL) Pr(FG)

Lecture 20

Naïve Bayes

$$(X_1)$$
 (Y) (X_d)

Y ~ Bernoulli(θ)

Aside: Bernoulli is just Binomial with count=1

 $X_j|Y \sim \text{Bernoulli}(\theta_{j,Y})$

$$Pr(Y, X_{1}, ..., X_{d})$$

= $Pr(X_{1}, ..., X_{d}, Y)$
= $Pr(X_{1}|Y) Pr(X_{2}|X_{1}, Y) ... Pr(X_{d}|X_{1}, ..., X_{d-1}, Y) Pr(Y)$
= $Pr(X_{1}|Y) Pr(X_{2}|Y) ... Pr(X_{d}|Y) Pr(Y)$

Prediction: predict label maximising $Pr(Y|X_1, ..., X_d)$

Short-hand for repeats: Plate notation

PGMs frequentist OR Bayesian...

- PGMs represent joints, which are central to Bayesian
- Catch is that Bayesians add: node per parameters, with table being the parameter's prior

Example PGMs

The hidden Markov model (HMM); lattice Markov random field (MRF)

The HMM (and Kalman Filter)

Sequential observed outputs from hidden state

 $A = \{a_{ij}\}$ $B = \{b_i(o_k)\}$ $\Pi = \{\pi_i\}$

transition probability matrix; $\forall i : \sum_j a_{ij} = 1$ output probability matrix; $\forall i : \sum_k b_i(o_k) = 1$ the initial state distribution; $\sum_i \pi_i = 1$

• The Kalman filter same with continuous Gaussian r.v.'s

HMM Applications

 NLP – part of speech tagging: given words in sentence, infer hidden parts of speech

"I love Machine Learning" \rightarrow noun, verb, noun, noun

Speech recognition: given waveform, determine phonemes

- Biological sequences: classification, search, alignment
- Computer vision: identify who's walking in video, tracking

Fundamental HMM Tasks

HMM Task	PGM Task
Evaluation. Given an HMM μ and observation sequence <i>O</i> , determine likelihood $Pr(O \mu)$	Probabilistic inference
Decoding. Given an HMM μ and observation sequence O , determine most probable hidden state sequence Q	MAP point estimate
Learning. Given an observation sequence O and set of states, learn parameters A, B, Π	Statistical inference

Computer Vision

Hidden square-lattice Markov random fields

Pixel labelling tasks in Computer Vision

Semantic labelling (Gould et al. 09)

Interactive figure-ground segmentation (Boykov & Jolly 2011)

Denoising (Felzenszwalb & Huttenlocher 04)

What these tasks have in common

- Hidden state representing semantics of image
 - * Semantic labelling: Cow vs. tree vs. grass vs. sky vs. house
 - * Fore-back segment: Figure vs. ground
 - * Denoising: Clean pixels
- Pixels of image
 - * What we observe of hidden state
- Remind you of HMMs?

A hidden square-lattice MRF

- Hidden states: square-lattice model
 - Boolean for two-class states

- Discrete for multi-class
- Continuous for denoising

- grass
- Pixels: observed outputs
 - * Continuous e.g. Normal

Application to sequences: CRFs

- Conditional Random Field: Same model applied to sequences
 - * observed outputs are words, speech, amino acids etc
 - states are tags: part-of-speech, phone, alignment...
- CRFs are discriminative, model P(Q/O)
 - * versus HMM's which are generative, P(Q,O)
 - * undirected PGM more general and expressive

Summary

- Probabilistic graphical models
 - * Motivation: applications, unifies algorithms
 - Motivation: ideal tool for Bayesians
 - * Independence lowers computational/model complexity
 - * PGMs: compact representation of factorised joints