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Next Lectures

* Representation of joint distributions

Conditional/marginal independence

+* Directed vs undirected

Probabilistic inference

* Computing other distributions from joint

Statistical inference

* Learn parameters from (missing) data
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Probabilistic Graphical Models

Marriage of graph theory and probability theory.
Tool of choice for Bayesian statistical learning.

We’ll stick with easier discrete case,
ideas generalise to continuous.
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Motivation by practlcal importance
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* Many applications
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Phylogenetic trees

Pedigrees, Linkage
analysis

Error-control codes
Speech recognition
Document topic models
Probabilistic parsing
Image segmentation

F

* Unifies many previously-
discovered algorithms

* X X X *x X X X

HMMs

Kalman filters

Mixture models

LDA

MRFs

CRF

Logistic, linear regression
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Motivation by way of comparison

-

Bayesian statistical learning

Model joint distribution of
X’s,Y and parameter r.v.’s

* “Priors”: marginals on
parameters

Training: update prior to
posterior using observed data

Prediction: output posterior,

s

o

Efficient joint representation

*

PGMs aka “Bayes Nets”

Independence made explicit

Trade-off between
expressiveness and need for
data, easy to make

*

= Easy for practitioners to model

* Algorithms to fit parameters,
compute marginals, posterior

or some function of it (MAP)
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Everything Starts at the Joint Distribution

* All joint distributions on discrete
r.v.'s can be represented as tables

* #irows grows exponentially with
#Hrv's
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* Example: Truth Tables

* M Boolean r.v.s require 2M-1 rows
** Table assigns probability per row
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The Good: What we can do with the joint

* Probabilistic inference from joint on r.v.’s

* Computing any other distributions involving our r.v.'s

e Pattern: want a distribution, have joint; use:
Bayes rule + marginalisation

* Example: naive Bayes classifier

* Predict class y of instance x by maximising

Pr(Y=yX=x) _ Pr(Y=yX=x)
Pr(X=x) X, Pr(X=xY=y)

Pr(Y =y|X=x) =

Recall: integration (over parameters) continuous equivalent of sum (both
referred to as marginalisation)
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The Bad & Ugly: Tables waaaaay too large!!

* The Bad: Computational complexity
** Tables have exponential number of rows in number of r.v.’s
* Therefore = poor space & time to marginalise

I

* The Ugly: Model complexity
* Way too flexible

* Way too many parameters to fit
- need lots of data OR will overfit

* Antidote: assume independence!
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Example: You're late!

Modeling a tardy lecturer. Boolean r.v.s
* T: Trevor teaches the class
* S:ltis sunny (o.w. bad weather)

* L: The lecturer arrives late (o.w. on time)

* Assume: Trevor sometimes delayed by bad weather, Trevor
more likely late than co-lecturer

+ Pr(s|T) = Pr(s), Pr(s) =0.3) Pr(7) =0.6)

e Lateness not independent on weather, 5 = e ) !

False True

lecturer
+ Need Pr(L|T = t,S = s) for all combinations s °°° ‘%t 102
True .0 0.1

* Need just 6 parameters -
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Independence: not a dirty word

Lazy Lecturer Model Model details

Pr(S, T) factors to Pr(S) Pr(7) 2
Our model with 5, T" independence

Pr(L|T,S) modelled in full 4
Assumption-free model Pr(L,T,S) modelled in full 7

* Independence assumptions
* Can be reasonable in light of domain expertise
+ Allow us to factor = Key to tractable models
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Factoring Joint Distributions

Chain Rule: for any ordering of r.v.s can always factor:

k
Pr(X1;X2) '--;Xk) — 1_[ 1Pr(Xi|Xi+1) ---)Xk)
i=

Model’s independence assumptions correspond to

— Dropping conditioning r.v.s in the factors!

— Example unconditional indep.: Pr(X;|X,) = Pr(X;)

— Example conditional indep.: Pr(X;|X,, X3) = Pr(X;|X,)

Example: independent rv.s Pr(Xy, ..., X)) = [T~ Pr(X;)

Simpler factors speed inference and avoid overfitting

11
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Nodes
Edges (acyclic)

Directed PGM

e Random variables

e Conditional dependence
* Node table: Pr(child|parents)

* Child directly depends on
parents

e Joint factorisation
Pr(Xy, X, .., Xi) = [1521 Pr(X;|X; € parents(X,))

Tardy Lecturer Example

Pr(S) Pr(T)

Pr(L|S,T)

12
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Example: Nuclear power plant

* Core temperature

- Temperature Gauge
- Alarm

* Model uncertainty in

monitoring failure
* GRL: gauge reads low

CTL: core temperature low

X

* FG: faulty gauge
* FA: faulty alarm
* AS: alarm sounds

PGMs to the rescue!

Pr(CTL) G e Pr(FG)

Pr(FA) Pr(GRL | CTL, FG)

Pr(AS | GRL, FA)

Joint Pr(CTL,FG,FA,GRL,AS) given by

Pr(AS|FA, GRL) Pr(FA) Pr(GRL|CTL, FG) Pr(CTL) Pr(FG)

13
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Nailve Bayes

Y ~ Bernoulli(@)

Aside: Bernoulli is just
Binomial with count=1

X;|Y ~ Bernoulli(é?j,y)

Pr(Y, Xy, ..., X;)
= Pr(Xq, .., X3, Y)
= Pr(X{|Y) Pr(X,|Xy,Y) ... Pr(X4| Xy, e, X4_1,Y) Pr(Y)
= Pr(X,|Y) Pr(X,|Y)...Pr(X;|Y) Pr(Y)

Prediction: predict label maximising Pr(Y|Xy, ..., X4)

14
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Short-hand for repeats: Plate notation

O

i=1..d

O

)

i=1..d
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PGMs frequentist OR Bayesian...

* PGMs represent joints, which are central to Bayesian

e Catch is that Bayesians add: node per parameters,
with table being the parameter’s prior

Y ~ Bernoulli(8)

X;|Y ~ Bernoulli(ej,Y)

0's ~ Beta 16
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Example PGMs

The hidden Markov model (HMM);
lattice Markov random field (MRF)

17
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The HMM (and Kalman Filter)

* Sequential observed outputs from hidden state

A={a;;} transition probability matrix; Vi : ) a;; = 1
B = {bi(or)} output probability matrix; Vi : ), bi(ox) =1
Il ={n;} the initial state distribution; Y .7, =1

e The Kalman filter same with continuous Gaussian r.v.’s

» A CRFis the (01 (o,
undirected analogue

d (o)) %)
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HMM Applications

NLP — part of speech tagging: given words in sentence,
infer hidden parts of speech

“I love Machine Learning” = noun, verb, noun, noun

Speech recognition: given waveform, determine

phonemes
oo e {4t — i

Biological sequences: classification, search, alignment

Computer vision: identify who’s walking in video, tracking

19
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Fundamental HMM Tasks

HMM Task PGM Task

Evaluation. Given an HMM u and
observation sequence 0, determine

likelihood Pr(0|u)

Decoding. Given an HMM u and
observation sequence O, determine most
probable hidden state sequence Q

Learning. Given an observation sequence O
and set of states, learn parameters A, B, I1

Probabilistic
inference

MAP point
estimate

Statistical
inference

20
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Computer Vision

Hidden square-lattice Markov random fields

21
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Pixel labelling tasks in Computer Vision

sky

ele

f‘oreground

Semantic labelling (Gould et al. 09)

Interactive figure-ground segmentation (Boykov & Jolly 2011) Denoising (Felzenszwalb & Huttenlocher 04)

22
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What these tasks have in common

* Hidden state representing semantics of image
* Semantic labelling: Cow vs. tree vs. grass vs. sky vs. house
* Fore-back segment: Figure vs. ground
* Denoising: Clean pixels

* Pixels of image

* What we observe of hidden state

e Remind you of HMMs? @ @ @
(or)

23
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A hidden square-lattice MRF

 Hidden states:
square-lattice model

+ Boolean for
two-class |

states
* Pixels: observed outputs

+* Discrete for
multi-class

*+ Continuous
for denoising

* Continuous e.g. Normal
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Application to sequences: CRFs

* Conditional Random Field: Same model applied to
sequences

* observed outputs are words, speech, amino acids etc
= states are tags: part-of-speech, phone, alignment...

* CRFs are discriminative, model P(Q/O)
* versus HMM'’s which are generative, P(Q,0)
* undirected PGM more general and expressive

(o @

d (o )—a) s

25



Statistical Machine Learning (S2 2017)

Lecture 20

Summary

* Probabilistic graphical models
* Motivation: applications, unifies algorithms
* Motivation: ideal tool for Bayesians
* Independence lowers computational/model complexity
* PGMs: compact representation of factorised joints
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