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Recap:	Bayesian	inference

• Uncertainty	not	captured	by	MLE,	MAP	etc

• Bayesian	approach	preserves	uncertainty
* care	about	predictions	NOT	parameters
* choose	prior	over	parameters,	then	model	posterior
* integrate	out	parameters	for	prediction	(today)

• Requires	computing	an	integral	for	the	’evidence’	
term
* conjugate	prior	makes	this	possible
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Stages	of	Training

1. Decide	on	model	formulation	&	prior

2. Compute	posterior over	parameters,	p(w|X,y)
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3. Find	mode	for	w

4. Use	to	make	
prediction	on	
test

3. Sample	many	w

4. Use	to	make	
ensemble average	
prediction	on	test

3. Use	all w	to	
make	expected
prediction	on	
test

MAP approx.	Bayes exact	Bayes
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Prediction	with	uncertain	w

• Could	predict	using	sampled	regression	curves
* sample	S parameters,	𝒘 " , 𝑠 ∈ [1, 𝑆]

* for	each	sample	compute	prediction	𝑦∗
(")at	test	point	x*

* compute	the	mean	(and	var.)	over	these	predictions
* this	process	is	known	as	Monte	Carlo	integration

• For	Bayesian	regression	there’s	a	simpler	solution
* integration	can	be	done	analytically,	giving	

𝑝(𝑦/∗ |𝑿, 𝒚, 𝒙∗, 𝜎5) = ∫ 𝑝 𝒘	 𝑿, 𝒚, 𝜎5)𝑝(𝑦∗ 	𝒙∗, 𝒘, 𝜎5 	𝑑𝒘
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Prediction	(cont.)

• Pleasant	properties	of	Gaussian	distribution	means	
integration	is	tractable

* additive	variance	based	on	x* match	to	training	data
* cf.	MLE/MAP	estimate,	where variance	is	a	fixed	constant
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p(y⇤|x⇤,X,y,�2
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Z
p(w|X,y,�2

)p(y⇤|x⇤,w,�2
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Z
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(wN and	VN defined	in	lecture	17)
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Bayesian	Prediction	example
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MLE	(blue)	and	MAP	(green)	
point	estimates,	with	fixed	
variance

variance	higher	further	
from	data	points

samples	from	posterior

MLE,	MAP	fit

Data:	y	=	x	sin(x);	Model	=	cubic
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Caveats

• Assumptions
* known	data	noise	parameter,	σ2

* data	was	drawn	from	the	model	distribution

• In	real	settings,	σ2 is	unknown
* has	its	own	conjugate	prior
Normal likelihood	⨉ InverseGamma prior	
results	in	InverseGamma posterior

* closed	form	predictive	distribution,	with	student-T	
likelihood
(see	Murphy,	7.6.3)
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Bayesian	Classification

How	can	we	apply	Bayesian	ideas
to	discrete	settings?	
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Generative	scenario

• First	off	consider	models	which	generate	the	input
* cf.	discriminative	models,	which	condition	on	the	input
* I.e.,	p(y	|	x) vs	p(x,	y),	Naïve	Bayes	vs	Logistic	Regression

• For	simplicity,	start	with	most	basic	setting
* n coin	tosses, of	which	k were	heads	
* only	have	x (sequence	of	outcomes),	but	no	‘classes’	y

• Methods	apply	to	generative	models	over	discrete	
data
* e.g.,	topic	models,	generative	classifiers	
(Naïve	Bayes,	mixture	of	multinomials)
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Discrete	Conjugate	prior:	Beta-Binomial

• Conjugate	priors	also	exist	for	discrete	spaces

• Consider	n coin	tosses, of	which	k were	heads
* let	p(head)	=	q	from	a	single	toss	(Bernoulli	dist)
* Inference	question	is	the	coin	biased,	i.e.,	is	q	≈	0.5

• Several	draws,	use
Binomial	dist
* and	its	conjugate	
prior,	Beta	dist
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p(k|n, q) =
✓
n

k

◆
qk(1� q)n�k

p(q) = Beta(q;↵,�)

=
�(↵+ �)

�(↵)�(�)
q↵�1(1� q)��1
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Beta	distribution

11
Sourced	from	https://en.wikipedia.org/wiki/Beta_distribution
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Beta-Binomial	conjugacy
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Bayesian	posterior

trick:	ignore	
constant	factors	
(normaliser)

Sweet!	We	known	the	
normaliser	for	Beta	

p(k|n, q) =
✓
n

k

◆
qk(1� q)n�k

p(q) = Beta(q;↵,�)

=
�(↵+ �)

�(↵)�(�)
q↵�1(1� q)��1

p(q|k, n) / p(k|n, q)p(q)
/ qk(1� q)n�kq↵�1(1� q)��1

= qk+↵�1(1� q)n�k+��1

/ Beta(q; k + ↵, n� k + �)
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Laplace’s	Sunrise	Problem
Every	morning	you	observe	the	sun	rising.	Based	solely	on	this	
fact,	what’s	the	probability	that	the	sun	will	rise	tomorrow?

• Use	beta-binomial,	where	q is	the	Pr(sun	rises	in	morning)
* posterior
* n	=	k	=	age	in	days
* let	alpha	=	beta	=	1	(uniform	prior)

• Under	these	assumptions	
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p(q|k, n) = Beta(q; k + ↵, n� k + �)

p(q|k) = Beta(q; k + 1, 1)

Ep(q|k) [q] =
k + 1

k + 2

’smoothed’	count	of	days	
where	sun	rose	/	did	not
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Sunrise	Problem	(cont.)
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Day	(n,	k) k+α n-k+β E[q]
0 1 1 0.5
1 2 1 0.667
2 3 1 0.75
…
365 366 1 0.997
2920	
(80	years)

2921 1 0.99997

Consider	a	human	life-span

Effect	of	prior	diminishing	with	data,	but	never	disappears	completely.
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Suite	of	useful	conjugate	priors
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likelihood conjugate	prior

Normal Normal	(for mean)

Normal Inverse	Gamma (for	variance)
or	Inverse	Wishart	(covariance)

Binomial	 Beta

Multinomial Dirichlet

Poisson Gamma
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Bayesian	Logistic
Regression
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Discriminative	classifier,	which	conditions
on	inputs.	How	can	we	do	Bayesian	

inference	in	this	setting?
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Now	for	Logistic	Regression…

• Similar	problems	with	parameter	uncertainty	
compared	to	regression
* although	predictive
uncertainty	in-built
to	model	outputs
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8.4. Bayesian logistic regression 257
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Figure 8.5 (a) Two-class data in 2d. (b) Log-likelihood for a logistic regression model. The line is drawn
from the origin in the direction of the MLE (which is at infinity). The numbers correspond to 4 points
in parameter space, corresponding to the lines in (a). (c) Unnormalized log posterior (assuming vague
spherical prior). (d) Laplace approximation to posterior. Based on a figure by Mark Girolami. Figure
generated by logregLaplaceGirolamiDemo.

Unfortunately this integral is intractable.
The simplest approximation is the plug-in approximation, which, in the binary case, takes the

form

p(y = 1|x,D) ≈ p(y = 1|x,E [w]) (8.60)

where E [w] is the posterior mean. In this context, E [w] is called the Bayes point. Of course,
such a plug-in estimate underestimates the uncertainty. We discuss some better approximations
below.

Murphy	Fig	8.5	&	8.6	p257-8

258 Chapter 8. Logistic regression

p(y=1|x, wMAP)
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decision boundary for sampled w

(b)

MC approx of p(y=1|x)
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(c)

numerical approx of p(y=1|x)
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Figure 8.6 Posterior predictive distribution for a logistic regression model in 2d. Top left: contours of
p(y = 1|x, ŵmap). Top right: samples from the posterior predictive distribution. Bottom left: Averaging
over these samples. Bottom right: moderated output (probit approximation). Based on a figure by Mark
Girolami. Figure generated by logregLaplaceGirolamiDemo.

8.4.4.1 Monte Carlo approximation

A better approach is to use a Monte Carlo approximation, as follows:

p(y = 1|x,D) ≈ 1

S

S∑

s=1

sigm((ws)Tx) (8.61)

where ws ∼ p(w|D) are samples from the posterior. (This technique can be trivially extended
to the multi-class case.) If we have approximated the posterior using Monte Carlo, we can reuse
these samples for prediction. If we made a Gaussian approximation to the posterior, we can
draw independent samples from the Gaussian using standard methods.

Figure 8.6(b) shows samples from the posteiror predictive for our 2d example. Figure 8.6(c)
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Now	for	Logistic	Regression…

• Can	we	use	conjugate	prior?	E.g.,	
* Beta-Binomial	for	generative binary	models
* Dirichlet-Multinomial	for	multiclass	(similar	formulation)

• Model	is	discriminative,	with	parameters	defined	
using	logistic	sigmoid*

* need	prior	over	w, not	q
* no	known	conjugate	prior	(!),	thus	use	a	Gaussian	prior

18*	Or	softmax for	multiclass;	same	problems	arise	and	similar	solution

p(y|q,x) = qy(1� q)1�y

q = �(x0
w)
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Non-conjugacy

• No	known	solution	for	the	normalising	constant

• Resolve	by	approximation

19

p(w|X,y) / p(w)p(y|X,w)

= Normal(0,�2
I)

nY

i=1

�(x0
iw)

yi
(1� �(x0

iw))

1�yi

Laplace	approx.:
• assume	posterior	≃ Normal	about	

mode
• can	compute	normalisation	constant,	

draw	samples	etc.

Murphy	Fig	8.6	p258
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Bayesian	Model	Selection

20

Using	the	evidence	to	select	the	
best	class of	model.
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Model	Selection

• Choosing	the	best	model
* linear,	polynomial	order,	RBF	basis/kernel
* setting	model	hyperparameters
* optimiser settings
* type	of	model	(e.g.,	decision	tree	vs	svm)

21

Complex	models:
• better	ability	fit	the	
training	data
• may	fit	it	too	well

Simple	models:
• more	constrained,	poorer	
fit	to	training	data

• might	be	insufficient
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Model	Selection	(frequentist)
• Holdout some	data	for	validation	
(fixed	set,	leave-one-out,	10-fold	cross	valid.,	etc)
* treat	held-out	error	as	estimate	of	generalisation error
* model	with	lowest	error	is	chosen
* might	retrain	chosen	model	on	full	dataset

• However,	this	is
* data	inefficient:	must	hold	aside	evaluation	data
* computationally	inefficient:	repeatedly	rounds	of	
training	and	evaluating

* ineffective:	when	selecting	many	parameters	at	once	
(can	overfit the	heldout set)
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Bayesian	Model	Selection

• Model	selection	using	Bayes	rule,	
to	select	between	
competing	model	classes
* with	Mi as	model	i and	D the	dataset	
e.g.,	X or y|X,	so	for	regression	p(D)	=	p(y|X)

* let	p(Mi)	be	uniform;	i.e.,	term	dropped

• Decision	between	two	model	classes	boils	
down	to	test
(known	as	Bayes	factor)
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p(Mi|D) =
p(D|Mi)p(Mi)

p(D)

p(M1|D)

p(M2|D)
=

p(D|M1)

p(D|M2)
> 1
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The	Evidence: p(D|M)	=	p(y|X,M)

• Imagine	we’re	considering	whether	to	use	a	linear	
basis	or	cubic	basis	for	supervised	regression
* what	is	p(y|X,	M=linear)	or	p(y|X,M=cubic)?
* what	happened	to	the	parameters	w?

• These	are	integrated	out,	i.e.,

* seen	before:	the	denominator	from	posterior,	aka	
‘marginal	likelihood’

24

p(y|X,M = linear) =

Z
p(y|X,w,M = linear)p(w)dw

p(w|X,y,M) =
p(y|X,w,M)p(w)

p(y|X,M)
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The	Evidence:	Bayesian	Occam’s	Razor

• How	well	does	the	model	fit	the	data,	under	any	(all)	
parameter	settings?

25

• Flexible	(complex)	
models
* able	to	fit	many	different	
datasets,	by	selecting	
specific	parameters

* most	other	parameter	
settings	will	lead	to	a	
poor	fit

• Simpler	models
* fit	few	datasets	well
* less	sensitive	to	
parameter	values

* many	parameter	
settings	will	give	similar	
fit
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Evidence	Cartoon	(under	uniform	prior)
• Space	of	models:	

linear	<	quadratic	<	
cubic

• Assuming	quadratic	
data,	this	is	best	fit	by	
>=	quadratic	model

• As	complexity	class	
grows,	space	of	
models	grows	too
* fraction	of	params

offering	‘good’	fit	to	
data	will	shrink

• Ideally,	would	select	
quadratic	model	as	
fraction	is	greatest

26

→

→

linear	models

→
quadratic	models

cubic	models

good	fit	to	
given	dataset
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Summary

• Conjugate	prior	relationships
* Normal-Normal,	Beta-Binomial

• Bayesian	inference
* parameters	are	‘nuisance’	variables
* integrated	out	during	inference

• Bayesian	classification
* non-conjugacy	necessitates	approximation

• Bayesian	model	selection
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