COMP90051 Statistical Machine Learning

Semester 2, 2017 Lecturer: Trevor Cohn

> 17. Bayesian inference; Bayesian regression

Training == optimisation (?)

Stages of learning & inference:

 Formulate model Regression

 $p(y|\mathbf{x}) = \text{sigmoid}(\mathbf{x'w})$

 $p(y|\mathbf{x}) = \text{Normal}(\mathbf{x}'\mathbf{w}; \sigma^2)$

Fit parameters to data

 $\hat{\mathbf{w}} = \operatorname{argmax}_{\mathbf{w}} p(\mathbf{y} | \mathbf{X}, \mathbf{w}) p(\mathbf{w})$ ditto

Make prediction

 $E[y_*] = \mathbf{x}'_* \hat{\mathbf{w}}$ $p(y_*|\mathbf{x}_*) = \operatorname{sigmoid}(\mathbf{x}'_* \hat{\mathbf{w}})$

$\widehat{\boldsymbol{w}}$ referred to as a 'point estimate'

Bayesian Alternative

Nothing special about \widehat{w} ... use more than one value?

Formulate model Regression

 $p(y|\mathbf{x}) = \text{sigmoid}(\mathbf{x}'\mathbf{w})$ $p(y|\mathbf{x}) = \text{Normal}(\mathbf{x}'\mathbf{w};\sigma^2)$

 Consider the space of likely parameters – those that fit the training data well

 $p(\mathbf{w}|\mathbf{X}, \mathbf{y})$

Make 'expected' prediction

 $p(y_*|\mathbf{x}_*) = E_{p(\mathbf{w}|\mathbf{X}_i,\mathbf{y})} [\text{sigmoid}(\mathbf{x}'\mathbf{w})]$

 $p(y_*|\mathbf{x}_*) = E_{p(\mathbf{w}|\mathbf{X}_i,\mathbf{y})} \left[\text{Normal}(\mathbf{x}'_*\mathbf{w}, \sigma^2) \right]$

Uncertainty

From small training sets, we rarely have complete confidence in any models learned. Can we quantify the uncertainty, and use it in making predictions?

Regression Revisited

- Learn model from data
 - * minimise error residuals by choosing weights $\widehat{\mathbf{w}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
- But... how confident are we
 - ✤ in ŵ?
 - * in the predictions?

Linear regression: $y = w_0 + w_1 x$ (here y = humidity, x = temperature)

Prediction uncertainty

- Single prediction is of limited use due to uncertainty
 - * single number uninformative may be wildly off
 - might want to formulate decision from prediction,
 e.g., if Pr(y < 70)

Confidence in MLE point estimate

- What does it mean to minimise objective?
 - are other nearby solutions similarly good?
- Effect of data
 - lots of data relative to dimensionality, MLE likely to be a good estimate
 - * otherwise unreliable
- MAP a *partial* solution, but still reliant on single point

Effect of Training Sample on MLE

- Modelling y = 2x 3
 - draw 1000s of training sets of 10 instances
 - * small added noise

- Fit weights each time using MLE
 - observe variability in weights
 - * peak at (2, -3)

Aside: Learning the noise rate

- Can also learn noise parameter, σ²
 - * express NLL as function of σ^2 ; differentiate; set to 0; solve

* results in
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{y}_i - \mathbf{X}_i \hat{\mathbf{w}})^2$$

- Quantifies the quality of the fit
 - allows smarter
 decision making,
 e.g., P(y < 60)

N.b., we compute better error bounds later on

9

Do we trust point estimate $\widehat{\mathbf{w}}$?

• How *stable* is learning?

- $f{w}$ highly sensitive to noise
- how much uncertainty in parameter estimate?
- more *informative* if
 NLL objective highly peaked
- Formalised as Fisher Information matrix
 - * E[2nd deriv of NLL]

$$\mathcal{I} = \frac{1}{\sigma^2} \mathbf{X}' \mathbf{X}$$

 measures curvature of objective about ŵ

Figure: Rogers and Girolami p81

3.5

10

The Bayesian View

Retain and model all unknowns (e.g., uncertainty over parameters) and use this information when making inferences.

A Bayesian View

- Could we reason over *all* parameters that are consistent with the data?
 - weights with a better fit to the training data should be more probable than others
 - make predictions with all these weights, scaled by their probability
- This is the idea underlying **Bayesian** inference

Uncertainty over parameters

- Many reasonable solutions to objective
 - * why select just one?
- Reason under *all* possible parameter values
 - * weighted by their *posterior probability*
- More robust predictions
 - less sensitive to overfitting, particularly with small training sets
 - * can give rise to more
 expressive model class
 (Bayesian logistic
 regression becomes non-linear!)

Frequentist vs Bayesian divide

- Frequentist: learning using point estimates, regularisation, p-values ...
 - * backed by complex theory relying on strong assumptions
 - mostly simpler algorithms, characterises much practical machine learning research
- Bayesian: maintain *uncertainty*, marginalise (sum) out unknowns during inference
 - nicer theory with fewer assumptions
 - * often more complex algorithms, but not always
 - * when possible, results in more elegant models

Bayesian Regression

Application of Bayesian inference to linear regression, using Normal prior over **w**

Revisiting Linear Regression

 $I_{D} = D \times D$ identity matrix Recall probabilistic formulation $y \sim \text{Normal}(\mathbf{x}'\mathbf{w}, \sigma^2)$ of linear regression $\mathbf{w} \sim \operatorname{Normal}(\mathbf{0}, \gamma^2 \mathbf{I}_D)$ Motivated by Bayes rule $p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$ $\max_{\mathbf{w}} p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \max_{\mathbf{w}} p(\mathbf{y}|\mathbf{X}, \mathbf{w}) p(\mathbf{w})$ Gives rise to the penalised RSS objective

point estimate taken here, avoids computing marginal likelihood term

16

Her

assum

var. k

Bayesian Linear Regression

Rewind one step, consider full posterior

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) = \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \sigma^2)p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

$$= \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \sigma^2)p(\mathbf{w})}{\int p(\mathbf{y}, |\mathbf{X}, \mathbf{w}, \sigma^2)p(\mathbf{w})d\mathbf{w}}$$

Can we compute the denominator (marginal likelihood or evidence)?

* if so, we can use the full posterior, not just its mode

Bayesian Linear Regression (cont)

- We have two Normal distributions
 * normal likelihood x normal prior
- Their product is also a Normal distribution
 - * **conjugate prior:** when product of likelihood x prior results in the same distribution as the prior
 - evidence can be computed easily using the normalising constant of the Normal distribution

 $p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) \propto \operatorname{Normal}(\mathbf{w}|\mathbf{0}, \gamma^2 \mathbf{I}_D) \operatorname{Normal}(\mathbf{y}|\mathbf{X}\mathbf{w}, \sigma^2 \mathbf{I}_N) \\ \propto \operatorname{Normal}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N)$

closed form solution for posterior!

Bayesian Linear Regression (cont)

 $p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) \propto \operatorname{Normal}(\mathbf{w}|\mathbf{0}, \gamma^2 \mathbf{I}_D) \operatorname{Normal}(\mathbf{y}|\mathbf{X}\mathbf{w}, \sigma^2 \mathbf{I}_N)$ $\propto \operatorname{Normal}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N)$

where

$$\mathbf{w}_N = rac{1}{\sigma^2} \mathbf{V}_N \mathbf{X'y}$$

 $\mathbf{V}_N = \sigma^2 (\mathbf{X}' \mathbf{X} + \frac{\sigma}{\gamma^2} \mathbf{I}_D)^{-1}$

Note that mean (and mode) are the MAP solution from before

Advanced: verify by expressing product of two Normals, gathering exponents together and 'completing the square' to express as squared exponential (i.e., Normal distribution).

Bayesian Linear Regression example

Step 1: select prior, here spherical about 0

Step 2: observe training data

Step 3: formulate posterior, from prior & likelihood

Samples from posterior

Sequential Bayesian Updating

- Can formulate $p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2)$ for given dataset
- What happens as we see more and more data?
 - **1**. Start from prior $p(\mathbf{w})$
 - 2. See new labelled datapoint
 - 3. Compute posterior $p(\mathbf{w}|\mathbf{X},\mathbf{y},\sigma^2)$
 - 4. The *posterior now takes role of prior*& repeat from step 2

Sequential Bayesian Updating

- Initially know little, many regression lines licensed
- Likelihood constrains possible weights such that regression is close to point
- Posterior becomes more refined/peaked as more data introduced
- Approaches a point mass about solution

Bishop Fig 3.7, p155

Summary

- Uncertainty not captured by point estimates (MLE, MAP)
- Bayesian approach preserves uncertainty
 - * care about predictions NOT parameters
 - choose prior over parameters, then model posterior
- New concepts:
 - sequential Bayesian updating
 - * conjugate prior (Normal-Normal)
- Still to come ... using posterior for Bayesian predictions on test