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17.	Bayesian	inference;	
Bayesian regression
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Training	==	optimisation	(?)
Stages	of	learning	&	inference:

• Formulate	model

• Fit	parameters	to	data

• Make	prediction
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Bayesian	Alternative
Nothing	special	about	𝒘"…	use	more	than	one	value?

• Formulate	model

• Consider	the	space	of	likely	parameters	– those	that	
fit	the	training	data	well

• Make	‘expected’	prediction
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Uncertainty

From	small	training	sets,	we	rarely
have	complete	confidence	in	any	models	

learned.	Can	we	quantify	the	uncertainty,	and	use	
it	in	making	predictions?
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Regression	Revisited

Linear	regression:	y	=	w0 +	w1 x
(here	y =	humidity,	x =	temperature)
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• Learn	model	from	data
* minimise error	residuals	
by	choosing	weights
𝐰" = 𝐗&𝐗 '(𝐗&𝐲

• But…	how	confident	
are	we	
* in	𝐰"?
* in	the	predictions?
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Prediction	uncertainty

• Single	prediction	is	of	limited	use	due	to	uncertainty
* single	number	uninformative	- may	be	wildly	off
* might	want	to	formulate	decision	from	prediction,	
e.g.,	if	Pr(y	<	70)
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Confidence	in	MLE	point	estimate

• What	does	it	mean	to	
minimise objective?
* …	are	other	nearby	
solutions	similarly	good?

• Effect	of	data
* lots	of	data	relative	to	
dimensionality,	MLE	likely	
to	be	a	good	estimate

* otherwise	unreliable

• MAP	a	partial solution,	but	still	
reliant	on	single	point
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Effect	of	Training	Sample	on	MLE

• Modelling y	=	2x	– 3
* draw	1000s	of	training
sets	of	10	instances

* small	added	noise
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• Fit	weights	each	time	using	
MLE
* observe	variability	in	
weights

* peak	at	(2,	-3)

mle fit	&	
noise	

ground	
truth

empirical	distribution	(histogram)
over	learned	weights	w

w1w0

single	data	sample
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Aside:	Learning	the	noise	rate

• Can	also	learn	noise	parameter,	σ2	
* express	NLL	as	function	of	σ2;	differentiate;	set	to	0;	solve
* results	in	

• Quantifies	the	
quality	of	the	fit
* allows	smarter
decision	making,
e.g.,	P(y <	60)
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N.b.,	we	compute	better	
error bounds	later	on

showing	+- 𝛔 (68%	confidence	interval)
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Do	we	trust	point	estimate	𝐰" ?
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• How	stable is	learning?
* 𝐰" highly	sensitive	to	noise
* how	much	uncertainty	in	

parameter	estimate?
* more	informative if

NLL	objective	highly	peaked

• Formalised as	Fisher	
Information	matrix
* E[2nd deriv of	NLL]

* measures curvature	of	
objective	about	𝐰"

I =
1

�2
X0X

Figure:	Rogers	and	Girolami p81



Statistical	Machine	Learning	(S2	2017) Lecture	17

The	Bayesian	View

Retain	and	model	all	unknowns	(e.g.,	uncertainty	
over	parameters)	and	use	this	information	when	

making	inferences.
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A	Bayesian	View

• Could	we	reason	over	all	parameters	that	are	
consistent	with	the	data?
* weights	with	a	better	fit	to	the	training	data	should	be	
more	probable	than	others

* make	predictions	with	all	these	weights,	scaled	by	their	
probability

• This	is	the	idea	underlying	Bayesian inference
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Uncertainty	over	parameters

• Many	reasonable	solutions	to	objective
* why	select	just	one?

• Reason	under	all possible	parameter	values
* weighted	by	their	posterior	probability

• More	robust	predictions
* less	sensitive	to	overfitting,
particularly	with	small
training	sets

* can	give	rise	to	more	
expressive	model	class	
(Bayesian	logistic	
regression	becomes	non-linear!)
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Frequentist vs	Bayesian	divide
• Frequentist:	learning	using	point	estimates,	
regularisation,	p-values	…
* backed	by	complex	theory	relying	on	strong	assumptions
* mostly	simpler	algorithms,	characterises much	practical	
machine	learning	research

• Bayesian:maintain	uncertainty,	marginalise (sum)	
out	unknowns	during	inference
* nicer	theory	with	fewer	assumptions
* often	more	complex	algorithms,	but	not	always
* when	possible,	results	in	more	elegant	models
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Bayesian	Regression

Application	of	Bayesian	inference
to	linear	regression,	using

Normal	prior	over	w
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Revisiting	Linear	Regression

• Recall	probabilistic	formulation	
of	linear	regression

• Motivated	by	Bayes	rule

• Gives	rise	to	the	penalised RSS	
objective
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y ⇠ Normal(x

0
w,�2

)

w ⇠ Normal(0, �2
ID)

p(w|X,y) =
p(y|X,w)p(w)

p(y|X)

max

w
p(w|X,y) = max

w
p(y|X,w)p(w)

point	estimate	taken	here,	avoids	
computing	marginal	likelihood	term

ID =	D	x	D	identity	matrix
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Bayesian	Linear	Regression

• Rewind	one	step, consider	full	posterior

• Can	we	compute	the	denominator	(marginal	
likelihood	or	evidence)?
* if	so,	we	can	use	the	full	posterior,	not	just	its	mode
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p(w|X,y,�2) =
p(y|X,w,�2)p(w)

p(y|X)

=
p(y|X,w,�2)p(w)R
p(y, |X,w,�2)p(w)dw

Here	we	
assume	noise	
var. known
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Bayesian	Linear	Regression	(cont)

• We	have	two	Normal	distributions
* normal	likelihood	x	normal	prior

• Their	product	is	also	a	Normal	distribution
* conjugate	prior:	when	product	of	likelihood	x	prior	
results	in	the	same	distribution	as	the	prior

* evidence can	be	computed	easily	using	the	normalising
constant	of	the	Normal	distribution

18

p(w|X,y,�2
) / Normal(w|0, �2ID)Normal(y|Xw,�2IN )

/ Normal(w|wN ,VN )

closed	form	solution	for	
posterior!
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Bayesian	Linear	Regression	(cont)
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wN =
1

�2
VNX0y

VN = �2(X0X+
�2

�2
ID)�1

Advanced: verify	by	expressing	product	of	two	
Normals,	gathering	exponents	together	and	
‘completing	the	square’	to	express	as	squared	

exponential	(i.e.,	Normal	distribution).

where
Note	that	mean	(and	
mode)	are	the	MAP	
solution	from	before

p(w|X,y,�2
) / Normal(w|0, �2ID)Normal(y|Xw,�2IN )

/ Normal(w|wN ,VN )
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Bayesian	Linear	Regression	example
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Step	1:	select	prior,	here	spherical	about	0 Step	2:	observe	training	data

Step	3:	formulate	posterior,	from	prior	&	likelihood Samples	from	posterior
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Sequential	Bayesian	Updating

• Can	formulate																												for	given	dataset

• What	happens	as	we	see	more	and	more	data?
1. Start	from	prior	
2. See	new	labelled	datapoint
3. Compute	posterior
4. The	posterior	now	takes	role	of	prior	

&	repeat	from	step	2
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p(w|X,y,�2)

p(w)

p(w|X,y,�2)
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Sequential	Bayesian	Updating

Bishop	Fig	3.7,	p155 22

3.3. Bayesian Linear Regression 155

Figure 3.7 Illustration of sequential Bayesian learning for a simple linear model of the form y(x,w) =
w0 + w1x. A detailed description of this figure is given in the text.
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Figure 3.7 Illustration of sequential Bayesian learning for a simple linear model of the form y(x,w) =
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• Initially	know	little,	many	
regression	lines	licensed

• Likelihood	constrains	
possible	weights	such	that	
regression	is	close	to	point

• Posterior	becomes	more	
refined/peaked	as	more	
data	introduced

• Approaches	a	point	mass	
about	solution
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Summary

• Uncertainty	not	captured	by	point	estimates	
(MLE,	MAP)

• Bayesian	approach	preserves	uncertainty
* care	about	predictions	NOT	parameters
* choose	prior	over	parameters,	then	model	posterior

• New	concepts:	
* sequential	Bayesian	updating
* conjugate	prior	(Normal-Normal)

• Still	to	come	...	using	posterior	for	Bayesian	
predictions	on	test 23


