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This lecture
• Introduction to manifold learning

∗ Motivation
∗ Focus on data transformation

• Unfolding the manifold
∗ Geodesic distances
∗ Isomap algorithm

• Spectral clustering
∗ Laplacian eigenmaps
∗ Spectral clustering pipeline
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Manifold Learning

Recovering low dimensional 
data representation non-

linearly embedded within a 
higher dimensional space
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The limitation of k-means and GMM
• K-means algorithm can find spherical clusters

• GMM can find elliptical clusters

• These algorithms will struggle in cases like this

4

desired resultK-means clustering
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Focusing on data geometry
• We are not dismissing the k-means algorithm yet, 

but we are going to put it aside for a moment

• One approach to address the problem in the 
previous slide would be to introduce improvements 
to algorithms such as k-means

• Instead, let’s focus on geometry of the data and see 
if we can transform the data to make it amenable for 
simpler algorithms
∗ Recall “transform the data vs modify the model” discussion 

in supervised learning
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Non-linear data embedding
• Recall the example with 3D GPS coordinates that denote a car’s 

location on a 2D surface

• In a similar example consider coordinates of items on a picnic 
blanket which is approximately a plane
∗ In this example, the data resides on a plane embedded in 3D

• A low dimensional surface can be quite curved in a higher 
dimensional space
∗ A plane of dough (2D) in a Swiss roll (3D)
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Key assumption: It’s simpler than it looks!
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• Key assumption: High dimensional data actually resides 
in a lower dimensional space that is locally Euclidean

• Informally, the manifold is a subset of points in the high-
dimensional space that locally looks like a low-
dimensional space
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Manifold example

8

• Informally, the manifold is a subset of points in the high-
dimensional space that locally looks like a low-dimensional 
space

• Example: arc of a circle
∗ consider a tiny bit of a circumference (2D)  can treat as line (1D)

A

B
C

𝐴𝐴𝐴𝐴 ≈ 𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴
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𝑙𝑙-dimensional manifold
• Definition from Guillemin and Pollack, Differential Topology, 1974

• A mapping 𝑓𝑓 on an open set 𝑈𝑈 ⊂ 𝑹𝑹𝑚𝑚 is called smooth if it has 
continuous partial derivatives of all orders

• A map 𝑓𝑓:𝑋𝑋 → 𝑹𝑹𝑙𝑙 is called smooth if around each point 𝒙𝒙 ∈ 𝑋𝑋 there 
is an open set 𝑈𝑈 ⊂ 𝑹𝑹𝑚𝑚 and a smooth map 𝐹𝐹:𝑈𝑈 → 𝑹𝑹𝑙𝑙 such that 𝐹𝐹
equals 𝑓𝑓 on 𝑈𝑈 ∩ 𝑋𝑋

• A smooth map 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 of subsets of two Euclidean spaces is a 
diffeomorphism if it is one to one and onto, and if the inverse map 
𝑓𝑓−1:𝑌𝑌 → 𝑋𝑋 is also smooth. 𝑋𝑋 and 𝑌𝑌 are diffeomorphic if such a map 
exists

• Suppose that 𝑋𝑋 is a subset of some ambient Euclidean space 𝑹𝑹𝑚𝑚. 
Then 𝑋𝑋 is an 𝑙𝑙-dimensional manifold if each point 𝒙𝒙 ∈ 𝑋𝑋 possesses a 
neighbourhood 𝑉𝑉 ⊂ 𝑋𝑋 which is diffeomorphic to an open set 𝑈𝑈 ⊂
𝑹𝑹𝑙𝑙
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Manifold examples

10

• A few examples of manifolds are shown below

• In all cases, the idea is that (hopefully) once the manifold is 
“unfolded”, the analysis, such as clustering becomes easy

• How to “unfold” a manifold?
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Geodesic Distances
and Isomap

A non-linear dimensionality 
reduction algorithm that 

preserves locality information 
using geodesic distances
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• Find a lower dimensional representation of data that 
preserves distances between points (MDS)

• Do visualization, clustering, etc. on lower 
dimensional representation Problems?

General idea: Dimensionality reduction

A

AB

B

?
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“Global distances” VS geodesic distances

• “Global distances” 
cause a problem: we 
may not want to 
preserve them

• We are interested in 
preserving distances 
along the manifold 
(geodesic distances)

geodesic 
distance

C
D
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MDS and similarity matrix
• In essence, “unfolding” a manifold is achieved via 

dimensionality reduction, using methods such as MDS

• Recall that the input of an MDS algorithm is similarity 
(aka proximity) matrix where each element 𝑤𝑤𝑖𝑖𝑖𝑖 denotes 
how similar data points 𝑖𝑖 and 𝑗𝑗 are

• Replacing distances with geodesic distances simply 
means constructing a different similarity matrix without 
changing the MDS algorithm
∗ Compare it to the idea of modular learning in kernel methods

• As you will see shortly, there is a close connection 
between similarity matrices and graphs and in the next 
slide, we review basic definitions from graph theory
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Refresher on graph terminology
• Graph is a tuple 𝐺𝐺 = {𝑉𝑉,𝐸𝐸}, where 𝑉𝑉 is a set of 

vertices, and 𝐸𝐸 ⊆ 𝑉𝑉 × 𝑉𝑉 is a set of edges. Each edge 
is a pair of vertices
∗ Undirected graph: pairs are unordered
∗ Directed graph: pairs are ordered

• Graphs model pairwise relations between objects
∗ Similarity or distance between the data points

• In a weighted graph, each vertex 𝑣𝑣𝑖𝑖𝑖𝑖 has an 
associated weight 𝑤𝑤𝑖𝑖𝑖𝑖
∗ Weights capture the strength of the relation between 

objects
15
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Weighted adjacency matrix
• We will consider weighted undirected graphs with 

non-negative weights 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0. Moreover, we will 
assume that 𝑤𝑤𝑖𝑖𝑖𝑖 = 0, if and only if vertices 𝑖𝑖 and 𝑗𝑗
are not connected

• The degree of a vertex 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 is defined as

deg 𝑖𝑖 ≡�
𝑖𝑖=1

𝑛𝑛
𝑤𝑤𝑖𝑖𝑖𝑖

• A weighted undirected graph can be represented 
with an weighted adjacency matrix 𝑾𝑾 that contain 
weights 𝑤𝑤𝑖𝑖𝑖𝑖 as its elements

16
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Similarity graph models data geometry
• Geodesic distances can be 

approximated using a graph in which 
vertices represent data points

• Let 𝑑𝑑(𝑖𝑖, 𝑗𝑗) be the Euclidean distance 
between the points in the original 
space

• Option 1: define some local radius 𝜀𝜀. 
Connect vertices 𝑖𝑖 and 𝑗𝑗 with an 
edge if 𝑑𝑑 𝑖𝑖, 𝑗𝑗 ≤ 𝜀𝜀

• Option 2: define nearest neighbor 
threshold 𝑘𝑘. Connect vertices 𝑖𝑖 and 𝑗𝑗
if 𝑖𝑖 is among the 𝑘𝑘 nearest 
neighbors of 𝑗𝑗 OR 𝑗𝑗 is among the 𝑘𝑘
nearest neighbors of 𝑖𝑖

• Set weight for each edge to 𝑑𝑑 𝑖𝑖, 𝑗𝑗
17
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distance
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Computing geodesic distances
• Given the similarity graph, 

compute shortest paths 
between each pair of points
∗ E.g., using Floyd-Warshall

algorithm in 𝑂𝑂 𝑛𝑛3

• Set geodesic distance 
between vertices 𝑖𝑖 and 𝑗𝑗 to 
the length (sum of weights) 
of the shortest path 
between them

• Define a new similarity 
matrix based on geodesic 
distances

18
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Isomap: summary
1. Construct the similarity 

graph

2. Compute shortest paths

3. Geodesic distances are 
the lengths of the 
shortest paths

4. Construct similarity 
matrix using geodesic 
distances

5. Apply MDS
19
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Spectral Clustering

An spectral graph theory 
approach to non-linear 

dimensionality reduction

20
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Data processing pipelines
• Isomap algorithm can be considered a pipeline in a 

sense that in combines different processing blocks, 
such as graph construction, and MDS

• Here MDS serves as a core sub-routine to Isomap

• Spectral clustering is similar to Isomap in that it also 
comprises a few standard blocks, including k-means 
clustering

• In contrast to Isomap, spectral clustering uses a 
different non-linear mapping technique called 
Laplacian eigenmap

21
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Spectral clustering algorithm
1. Construct similarity graph, use the corresponding 

adjacency matrix as a new similarity matrix
∗ Just as in Isomap, the graph captures local geometry and 

breaks long distance relations
∗ Unlike Isomap, the adjacency matrix is used “as is”, 

shortest paths are not used

2. Map data to a lower dimensional space using 
Laplacian eigenmaps on the adjacency matrix
∗ This uses results from spectral graph theory

3. Apply k-means clustering to the mapped points

22
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Similarity graph for spectral clustering
• Again, we start with constructing a similarity graph. This can 

be done in the same way as for Isomap (but no need to 
compute the shortest paths)

• Recall that option 1 was to connect points that are closer than 
𝜀𝜀, and options 2 was to connect points within 𝑘𝑘 neiborhood

• There is also option 3 usually considered for spectral 
clustering. Here all points are connected to each other (the 
graph is fully connected). The weights are assigned using a 
Gaussian kernel (aka heat kernel) with width parameter 𝜎𝜎

𝑤𝑤𝑖𝑖𝑖𝑖 = exp −
1
𝜎𝜎

𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑖𝑖
2
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Graph Laplacian
• Recall that 𝑾𝑾 denotes weighted adjacency matrix which 

contains all weights 𝑤𝑤𝑖𝑖𝑖𝑖
• Next, degree matrix 𝑫𝑫 is defined as a diagonal matrix 

with vertex degrees on the diagonal. Recall that a vertex 
degree is deg 𝑖𝑖 = ∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑖𝑖

• Finally, another special matrix associated with each graph 
is called unnormalised graph Laplacian and is defined as 
𝑳𝑳 ≡ 𝑫𝑫 −𝑾𝑾
∗ For simplicity, here we introduce spectral clustering using 

unnormalised Laplacian. In practice, it is common to use a 
Laplacian normalised in certain way, e.g., 𝑳𝑳𝑛𝑛𝑛𝑛𝑚𝑚 ≡ 𝑰𝑰 − 𝑫𝑫−1𝑾𝑾, 
where 𝑰𝑰 is an identity matrix

24
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Laplacian eigenmaps
• Laplacian eigenmaps, a central sub-routine of spectral clustering, is 

a non-linear dimensionality reduction method

• Similar to MDS, the idea is to map the original data points 𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑚𝑚, 
𝑖𝑖 = 1, … ,𝑛𝑛 to a set of low-dimensional points 𝒛𝒛𝑖𝑖 ∈ 𝑹𝑹𝑙𝑙, 𝑙𝑙 < 𝑚𝑚 that 
“best represent” the original data

• Laplacian eigenmaps use a similarity matrix 𝑾𝑾 rather than original 
data coordinates as a starting point
∗ Here the similarity matrix 𝑾𝑾 is the weighted adjacency matrix of the 

similarity graph

• Earlier, we’ve seen examples of how “best represent” criterion is 
formalised in MDS methods

• Laplacian eigenmaps use a different criterion, namely the aim is to 
minimise (subject to some constraints) 

�
𝑖𝑖,𝑖𝑖

𝒛𝒛𝑖𝑖 − 𝒛𝒛𝑖𝑖
2
𝑤𝑤𝑖𝑖𝑖𝑖
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Alternative representation of mapping
• This minimisation problem is solved using results from 

spectral graph theory

• Instead of the mapped points 𝒛𝒛𝑖𝑖, the output can be 
viewed as a set of 𝑛𝑛 −dimensional vectors 𝒇𝒇𝑖𝑖, 𝑗𝑗 = 1, … , 𝑙𝑙. 
The solution eigenmap is expressed in terms of these 𝒇𝒇𝑖𝑖
∗ For example, if the mapping is onto 1D line, 𝒇𝒇1 = 𝒇𝒇 is just a 

collection of coordinates for all 𝑛𝑛 points
∗ If the mapping is onto 2D, 𝒇𝒇1 is a collection of all the fist 

coordinates, and 𝒇𝒇2 is a collection of all the second coordinates

• For illustrative purposes, we will consider a simple 
example of mapping to 1D

26
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Problem formulation for 1D eigenmap
• Given an 𝑛𝑛 × 𝑛𝑛 similarity matrix 𝑾𝑾, our aim is to find 

a 1D mapping 𝒇𝒇, such that 𝑓𝑓𝑖𝑖 is the coordinate of the 
mapped 𝑖𝑖𝑡𝑡𝑡 point. We are looking for a mapping that 
minimises 1

2
∑𝑖𝑖,𝑖𝑖 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖

2𝑤𝑤𝑖𝑖𝑖𝑖

• Clearly for any 𝒇𝒇, this can be minimised by 
multiplying 𝒇𝒇 by a small constant, so we need to 
introduce a scaling constraint, e.g., 𝒇𝒇 2 = 𝒇𝒇′𝒇𝒇 = 1

• Next recall that 𝑳𝑳 ≡ 𝑫𝑫 −𝑾𝑾

27
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Re-writing the objective in vector form
• 1

2
∑𝑖𝑖,𝑖𝑖 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖

2
𝑤𝑤𝑖𝑖𝑖𝑖

• = 1
2
∑𝑖𝑖,𝑖𝑖 𝑓𝑓𝑖𝑖2𝑤𝑤𝑖𝑖𝑖𝑖 − 2𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑖𝑖2𝑤𝑤𝑖𝑖𝑖𝑖

• = 1
2
∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖2 ∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑖𝑖 − 2∑𝑖𝑖,𝑖𝑖 𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 + ∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖2 ∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑖𝑖

• = 1
2
∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖2deg 𝑖𝑖 − 2∑𝑖𝑖,𝑖𝑖 𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 + ∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖2deg 𝑗𝑗

• = ∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖2deg 𝑖𝑖 − ∑𝑖𝑖,𝑖𝑖 𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖

• = 𝒇𝒇′𝑫𝑫𝒇𝒇 − 𝒇𝒇′𝑾𝑾𝒇𝒇

• = 𝒇𝒇′𝑳𝑳𝒇𝒇

28
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Laplace recontre Lagrange
• Our problem becomes to minimise 𝒇𝒇′𝑳𝑳𝒇𝒇, subject to 𝒇𝒇′𝒇𝒇 = 1. Recall 

the method of Lagrange multipliers. Introduce a Lagrange multiplier 
𝜆𝜆, and set derivatives of the Lagrangian to zero

• 𝓛𝓛 = 𝒇𝒇′𝑳𝑳𝒇𝒇 − 𝜆𝜆 𝒇𝒇′𝒇𝒇 − 1

• 2𝒇𝒇′𝑳𝑳′ − 2𝜆𝜆𝒇𝒇′ = 0

• 𝑳𝑳𝒇𝒇 = 𝜆𝜆𝒇𝒇

• The latter is precisely the definition of an eigenvector with 𝜆𝜆 being 
the corresponding eigenvalue!

• Critical points of our objective function 𝒇𝒇′𝑳𝑳𝒇𝒇 = 1
2
∑𝑖𝑖,𝑖𝑖 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖

2
𝑤𝑤𝑖𝑖𝑖𝑖

are eigenvectors of 𝑳𝑳

• Note that the function is actually minimised using eigenvector 𝟏𝟏, 
which is not useful. Therefore, for 1D mapping we use an 
eigenvector with the second smallest eigenvalue

29
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Laplacian eigenmaps: summary
• Start with points 𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑚𝑚. Construct a similarity graph using 

one of 3 options

• Construct weighted adjacency matrix 𝑾𝑾 (do not compute 
shortest paths) and the corresponding Laplacian matrix 𝑳𝑳

• Compute eigenvectors of 𝑳𝑳, and arrange them in the order of 
the corresponding eignevalues 0 = 𝜆𝜆1 < 𝜆𝜆2 < ⋯ < 𝜆𝜆𝑛𝑛

• Take eigenvectors corresponding to 𝜆𝜆2 to 𝜆𝜆𝑙𝑙+1 as 𝒇𝒇1, … ,𝒇𝒇𝑙𝑙, 
𝑙𝑙 < 𝑚𝑚, where each 𝒇𝒇𝑖𝑖 corresponds to one of the new 
dimensions

• Combine all vectors into an 𝑛𝑛 × 𝑙𝑙 matrix, with 𝒇𝒇𝑖𝑖 in columns. 
The mapped points are the rows of the matrix

30
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Spectral clustering: summary

31

1. Construct a similarity 
graph

2. Map data to a lower 
dimensional space using 
Laplacian eigenmaps on 
the adjacency matrix

3. Apply k-means clustering
to the mapped points

spectral clustering result
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This lecture
• Introduction to manifold learning

∗ Motivation
∗ Focus on data transformation

• Unfolding the manifold
∗ Geodesic distances
∗ Isomap algorithm

• Spectral clustering
∗ Laplacian eigenmaps
∗ Spectral clustering pipeline
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