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This lecture
• Principal components analysis

∗ Linear dimensionality reduction method
∗ Diagonalising covariance matrix

• Multidimensional scaling
∗ Non-linear dimensionality reduction methods
∗ Explicit search for a low-dimensional configuration
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Dimensionality reduction
• Moving on from clustering to the next unsupervised 

learning topic

• Dimensionality reduction refers to representing the data 
using a smaller number of variables (dimensions) while 
preserving the “interesting” structure of the data

• Such a reduction can serve several purposes
∗ Visualisation (e.g., by mapping multidimensional data on 2D)
∗ Computational efficiency
∗ Data compression
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Exploiting data structure

4

• Example 1: GPS coordinates are 3D, 
while car locations on a flat road are 
actually 2D

• Example2: Marks* for Knowledge 
Technology and Statistical Machine 
Learning

KT mark
SM

L 
m

ar
k

* synthetic data :)

• Dimensionality reduction in general results in loss of information

• The trick is to ensure that most of the “interesting” information 
(signal) is preserved, while what is lost is mostly noise

• This is often possible because real data may have inherently fewer 
dimensions that recorded variables
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Principal Component 
Analysis

Finding a rotation of data 
that minimises covariance 

between variables
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Principal components analysis
• Principal components analysis (PCA) is a popular method for 

dimensionality reduction and data analysis in general

• Given a dataset 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛, 𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑚𝑚, PCA aims to find a new coordinate 
system such that most of the variance is concentrated along the first 
coordinate, then most of the remaining variance along the second 
coordinate, etc.

• Dimensionality reduction is based on discarding all coordinates except the 
first 𝑙𝑙 < 𝑚𝑚

6

original 
data is 2D

find new 
axes

new coordinate 
system, still 2D

Leave only the 
first coordinate
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Naïve PCA algorithm
• In principle, PCA operation can be described as follows

1. Choose an axis, such that the variance along this axis is maximised

2. Choose the next axis perpendicular to all axes so far, such that the 
(remaining) variance along this axis is maximised

3. Repeat 2, until you have the same number of axes (i.e., 
dimensions) as in the original data

4. Project original data on the axes. This gives new coordinates (“PCA 
coordinates”)

5. For each point, keep only the first 𝑙𝑙 coordinates

Such an algorithm if implemented directly would work, but there’s a 
better solution
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Formalising the problem

8

• First, recall the geometric definition 
of a dot product 𝒖𝒖 ⋅ 𝒗𝒗 = 𝑢𝑢𝒗𝒗 𝒗𝒗

• Suppose 𝒗𝒗 = 1, so 𝒖𝒖 ⋅ 𝒗𝒗 = 𝑢𝑢𝒗𝒗

• Vector 𝒗𝒗 can be considered an 
coordinate axis, and 𝑢𝑢𝒗𝒗 a coordinate 
of point 𝒖𝒖

• The main part of PCA is finding the new coordinate system, such 
that most of the variation is captured by “earlier” axes

• Let’s write down this aim formally and see how it can be achieved

𝒖𝒖

𝒗𝒗

𝜃𝜃
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Data transformation
• So the “new coordinate system” is a set of vectors 
𝒑𝒑1, … ,𝒑𝒑𝑚𝑚, where each 𝒑𝒑𝑖𝑖 = 1

• Consider an original data point 𝒙𝒙𝑗𝑗, 𝑗𝑗 = 1, … ,𝑛𝑛, and a 
principal axis 𝒑𝒑𝑖𝑖, 𝑖𝑖 = 1, … ,𝑚𝑚

• The corresponding 𝑖𝑖𝑡𝑡𝑡 coordinate for the first point after 
the transformation is 𝒑𝒑𝑖𝑖 ′(𝒙𝒙1)
∗ For the second point it is 𝒑𝒑𝑖𝑖 ′(𝒙𝒙2), etc.

• Collate all these numbers into a vector 
𝒑𝒑𝑖𝑖 ′(𝒙𝒙1), … , 𝒑𝒑𝑖𝑖 ′(𝒙𝒙𝑛𝑛) ′ = 𝒑𝒑𝑖𝑖 ′𝑿𝑿 ′ = 𝑿𝑿′𝒑𝒑𝑖𝑖, where 𝑿𝑿

has original data points in columns
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Refresher on basic statistics

10

• Consider a random variable 𝑈𝑈 and the corresponding sample 𝒖𝒖 =
𝑢𝑢1, … ,𝑢𝑢𝑛𝑛 ′

• Everyone knows how to compute sample mean �𝑢𝑢 ≡ 1
𝑛𝑛
∑𝑖𝑖𝑛𝑛 𝑢𝑢𝑖𝑖. Most people 

will also remember sample variance 1
𝑛𝑛−1

∑𝑖𝑖=1𝑛𝑛 𝑢𝑢𝑖𝑖 − �𝑢𝑢 2

• Suppose the mean was subtracted beforehand (the sample is centered). In 
this case, the variance is a scaled dot product 1

𝑛𝑛−1
𝒖𝒖′𝒖𝒖

• Similarly, if we have a centered random sample 𝒗𝒗 from another random 
variable, sample covariance is 1

𝑛𝑛−1
𝒖𝒖′𝒗𝒗

• Finally, if our data is 𝒙𝒙1 = 𝑢𝑢1, 𝑣𝑣1 ′, … , 𝒙𝒙𝑛𝑛 = 𝑢𝑢𝑛𝑛, 𝑣𝑣𝑛𝑛 ′ organised into a 
matrix 𝑿𝑿 with data in columns and centered variables in rows, we have 
that covariance matrix is 𝚺𝚺𝑋𝑋 ≡

1
𝑛𝑛−1

𝑿𝑿𝑿𝑿′
∗ In this example, data is 2D, but the same hold for any number of dimensions
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The objective of PCA
• From now we shall assume that the data is centered

• Let’s start with the objective for the first principal 
axis only. The data projected on this axis is described 
by 𝑿𝑿′𝒑𝒑1

• Accordingly, the variance along this principal axis is 
1

𝑛𝑛−1
𝑿𝑿′𝒑𝒑1 ′ 𝑿𝑿′𝒑𝒑1 = 1

𝑛𝑛−1
𝒑𝒑1′ 𝑿𝑿𝑿𝑿′𝒑𝒑1 = 𝒑𝒑1′ 𝚺𝚺𝑋𝑋𝒑𝒑1

∗ Here 𝚺𝚺𝑋𝑋 is the covariance matrix of the original data

• PCA aims to find 𝒑𝒑1 that maximises 𝒑𝒑1′ 𝚺𝚺𝑋𝑋𝒑𝒑1, subject 
to 𝒑𝒑1 = 1

11
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Solving the optimisation problem
• PCA aims to find 𝒑𝒑1 that maximises 𝒑𝒑1′ 𝚺𝚺𝑋𝑋𝒑𝒑1, subject to 

𝒑𝒑1 = 𝒑𝒑1′ 𝒑𝒑1 = 1

• Recall our old friend Lagrange. Introduce a Lagrange 
multiplier 𝜆𝜆1, and set derivatives of the Lagrangian to 
zero

• 𝐿𝐿 = 𝒑𝒑1′ 𝚺𝚺𝑋𝑋𝒑𝒑1 − 𝜆𝜆1 𝒑𝒑1′ 𝒑𝒑1 − 1

• 𝜕𝜕𝜕𝜕
𝜕𝜕𝒑𝒑1

= 2𝚺𝚺𝑋𝑋𝒑𝒑1 − 2𝜆𝜆1𝒑𝒑1 = 0

• 𝚺𝚺𝑋𝑋𝒑𝒑1 = 𝜆𝜆1𝒑𝒑1
• The latter is precisely the definition of an eigenvector 

with 𝜆𝜆1 being the corresponding eigenvalue
12
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Refresher on eigenvectors (1/2)

13

• Given a square matrix 𝑨𝑨, a 
column vector 𝒆𝒆 is called 
an eigenvector if 𝑨𝑨𝒆𝒆 =
𝜆𝜆𝒆𝒆. Here 𝜆𝜆 is the 
corresponding eigenvalue

Adapted from Lantonov at Wikimedia Commons (CC4)

𝒆𝒆

𝑨𝑨𝒆𝒆 = 𝜆𝜆𝒆𝒆

• Geometric interpretation: compare 𝑨𝑨𝒆𝒆 with 𝑷𝑷𝒙𝒙𝑖𝑖 from 
previous slides. Here 𝑨𝑨 is a transformation matrix 
(“new axes”) for some vector 𝒆𝒆. Vector 𝒆𝒆 is such that it 
still points to the same direction after transformation
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Refresher on eigenvalues (2/2)

14

• Algebraic interpretation: if 𝑨𝑨𝒆𝒆 = 𝜆𝜆𝒆𝒆 then 𝑨𝑨 − 𝜆𝜆𝑰𝑰 𝒆𝒆 = 0, 
where 𝑰𝑰 is the identity matrix

• This equation has a non-zero solution 𝒆𝒆 if and only if the 
determinant is zero 𝑨𝑨 − 𝜆𝜆𝑰𝑰 = 0. Eigenvalues are roots of this 
equation called characteristic equation

• Eigenvectors and eigenvalues are prominent concepts in 
linear algebra and arise in many practical applications

• Spectrum of a matrix is a set of its eignevalues
∗ Hence name “spectral clustering” in a next lecture

• There are efficient algorithms for computing eigenvectors
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Finding the first PCA axis
• We conclude that in order to maximise variance 

along the first principal axis, the axis should be 
chosen such that 𝚺𝚺𝑋𝑋𝒑𝒑1 = 𝜆𝜆1𝒑𝒑1

• In other words, 𝒑𝒑1 has to be an eigenvector of 
centered data covariance matrix 𝚺𝚺𝑋𝑋

• Note that 𝜆𝜆1 = 𝒑𝒑1′ 𝚺𝚺𝑋𝑋𝒑𝒑1, and recall that 𝒑𝒑1′ 𝚺𝚺𝑋𝑋𝒑𝒑1 is 
the variance of the projected data

• Thus we need to choose 𝒑𝒑1 that corresponds to the 
largest eigenvalue of centered data covariance matrix 
𝚺𝚺𝑋𝑋

15
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Efficient solution for PCA
• This type of reasoning can be continued to find subsequent axes 𝒑𝒑2, 
𝒑𝒑3, etc.

• Note that constraint 𝒑𝒑𝑖𝑖 = 1 is important because otherwise 
variance 𝒑𝒑𝑖𝑖′𝚺𝚺𝑋𝑋𝒑𝒑𝑖𝑖 can be arbitrary increased by rescaling 𝒑𝒑𝑖𝑖

• Each time we add additional constraints that the next axis is 
orthogonal to all previous

• It turns out that the final solution is to set 𝒑𝒑𝑖𝑖 as eigenvectors of 
centered data covariance matrix 𝚺𝚺𝑋𝑋 in the order of decreasing 
corresponding eigenvalues

• But is this possible to do with any 𝚺𝚺𝑋𝑋?

• Lemma: a real symmetric 𝑚𝑚 × 𝑚𝑚 matrix has 𝑚𝑚 real eigenvalues and 
the corresponding eigenvectors are orthogonal

16
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Interim summary on PCA (1/2)

17

• Assume data points are arranged in columns of 𝑿𝑿. That means 
that the variables are in rows

• Ensure that the data is centered: subtract the mean of each 
row from each row

• We seek for an orthonormal basis 𝒑𝒑1, … ,𝒑𝒑𝑚𝑚
∗ That is, each axis vector is of unit length and perpendicular to every 

other axis

• In order to find such a basis, find eigenvalues of centered data 
covariance matrix 𝚺𝚺𝑋𝑋 ≡

1
𝑛𝑛−1

𝑿𝑿𝑿𝑿′

∗ This is always possible, and there are efficient ways of doing this
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Interim summary on PCA (2/2)

18

• Sort eigenvalues from largest to smallest
∗ Each eigenvalue equals to variance along the corresponding PCA axis

• Set 𝒑𝒑1, … ,𝒑𝒑𝑚𝑚 as corresponding eigenvectors

• Project data 𝑿𝑿 onto these new axes to get coordinates of the 
transformed data

• Keep only the first 𝑠𝑠 coordinates to reduce dimensionality
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Additional effect of PCA

19

• PCA aims to find axes such that the variance along each subsequent axis is 
maximised

• Consider axes 𝑖𝑖 and (𝑖𝑖 + 1). Informally, if there’s a correlation between them, this 
means that axis 𝑖𝑖 can be rotated further to capture more variance

• PCA should end up finding new axes (i.e., the transformation) such that the 
transformed data is uncorrelated

correlation 
because of 

suboptimal axes 
placement

no 
correlationoriginal 

data is 2D
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Spectral theorem for symmetric matrices

20

• In order to explore this effect further, we need to refer to one 
of the fundamental results in linear algebra
∗ The proof is outside the scope of this subject
∗ This is a special case of singular value decomposition theorem

• Theorem: for any a real symmetric matrix 𝚺𝚺𝑋𝑋 there exists a 
real orthogonal matrix 𝑷𝑷 with eigenvectors of 𝚺𝚺𝑋𝑋 arranged in 
rows and a diagonal matrix of eigenvalues 𝚲𝚲 such that 𝚺𝚺𝑋𝑋 =
𝑷𝑷′𝚲𝚲𝑷𝑷
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Diagonalising covariance matrix (1/2)

21

• Form a transformation matrix 𝑷𝑷 with eigenvectors (the new 
axes) as rows 
∗ By our problem formulation, 𝑷𝑷 is an orthonormal matrix

• Note that 𝑷𝑷′𝑷𝑷 = 𝑰𝑰, where 𝑰𝑰 is the identity matrix
∗ To see this recall that each element of the resulting matrix 

multiplication is a dot product of the corresponding row and column
∗ So element (𝑖𝑖, 𝑗𝑗) of 𝑷𝑷′𝑷𝑷 is the dot product 𝒑𝒑𝑖𝑖′𝒑𝒑𝑗𝑗, which is 1 if 𝑖𝑖 = 𝑗𝑗, 

and 0 otherwise

• The transformed data is 𝑷𝑷𝑿𝑿
∗ Similar to above, note that element (𝑖𝑖, 𝑗𝑗) of 𝑷𝑷𝑿𝑿 is the dot product 
𝒑𝒑𝑖𝑖′𝒙𝒙𝑗𝑗, which is the projection of 𝒙𝒙𝑗𝑗 on axis 𝒑𝒑𝑖𝑖, i.e., the new 𝑖𝑖𝑡𝑡𝑡
coordinate for 𝑗𝑗𝑡𝑡𝑡 point
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Diagonalising covariance matrix (2/2)

22

• The covariance of the transformed data is

• 𝚺𝚺𝑷𝑷𝑿𝑿 ≡
1

𝑛𝑛−1
𝑷𝑷𝑿𝑿 𝑷𝑷𝑿𝑿 ′ = 1

𝑛𝑛−1
𝑷𝑷𝑿𝑿 𝑿𝑿′𝑷𝑷′ = 𝑷𝑷𝚺𝚺𝑋𝑋𝑷𝑷′

• By spectral decomposition theorem we have 𝚺𝚺𝑋𝑋 = 𝑷𝑷′𝚲𝚲𝑷𝑷

• Therefore 𝚺𝚺𝑷𝑷𝑿𝑿 = 𝑷𝑷𝑷𝑷′𝚲𝚲𝑷𝑷𝑷𝑷′ = 𝚲𝚲

• The covariance matrix of the transformed data is diagonal 
with eigenvalues on the diagonal of 𝚲𝚲

• The transformed data is uncorrelated
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Non-linear data and kernel PCA

• Low dimensional approximation 
need not be linear

• Kernel PCA: map data to feature 
space, then run PCA
∗ Express principal components in terms 

of data points. Solution uses 𝑿𝑿′𝑿𝑿 that 
can be kernelised 𝑿𝑿′𝑿𝑿 𝑖𝑖𝑗𝑗 = 𝐾𝐾 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗

∗ The solution strategy differs from 
regular PCA

∗ Changing the kernel leads to a different 
feature space transformation

23

PCA

Kernel PCA
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Multidimensional Scaling

A brief overview of a family 
of scaling methods

24
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Multidimensional scaling
• Another common approach to address non-linear data is 

multidimensional scaling (MDS)

• MDS is a common name for a group of related methods

• MDS aims to map data to a lower-dimensional space, such that 
pairwise dis(similarities) are preserved

25

MDS
𝒙𝒙1, … ,𝒙𝒙𝑛𝑛
𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑚𝑚

𝒛𝒛1, … , 𝒛𝒛𝑛𝑛
𝒛𝒛𝑖𝑖 ∈ 𝑹𝑹𝑙𝑙
𝑙𝑙 < 𝑚𝑚

dis(similarity) 
function

𝑑𝑑 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 → 𝑹𝑹

Pairwise dis(similarities) 
between points are 
preserved (to the 
extent possible)

Matrix of 
dis(similarities) 

between all 
pairs of points
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Types of MDS

26

• There are two “parameters” of the MDS approach
∗ How to measure dis(similarity)
∗ How to measure preservation of dis(similarity)

• Different types of MDS differ in these “parameters”

MDS
𝒙𝒙1, … ,𝒙𝒙𝑛𝑛
𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑚𝑚

𝒛𝒛1, … , 𝒛𝒛𝑛𝑛
𝒛𝒛𝑖𝑖 ∈ 𝑹𝑹𝑙𝑙
𝑙𝑙 < 𝑚𝑚

dis(similarity) 
function

𝑑𝑑 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 → 𝑹𝑹

Pairwise dis(similarities) 
between points are 
preserved (to the 
extent possible)

Matrix of 
dis(similarities) 

between all 
pairs of points
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MDS as an optimization problem

27

• One natural choice is to measure dissimilarity between the mapped 
points using Euclidean distance 𝑑𝑑 𝒛𝒛𝑖𝑖 , 𝒛𝒛𝑗𝑗 = 𝒛𝒛𝑖𝑖 − 𝒛𝒛𝑗𝑗

• The preservation can be measured using a function such as

𝑆𝑆 𝒛𝒛1, … , 𝒛𝒛𝑛𝑛 =
∑𝑖𝑖,𝑗𝑗 𝑑𝑑 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 − 𝑑𝑑 𝒛𝒛𝑖𝑖 , 𝒛𝒛𝑗𝑗

2

∑𝑖𝑖,𝑗𝑗 𝑑𝑑 𝒛𝒛𝑖𝑖 , 𝒛𝒛𝑗𝑗
2

∗ In MDS, such a function is called the stress function

• The aim of such MDS is to

find 𝒛𝒛1, … , 𝒛𝒛𝑛𝑛 that minimise 𝑆𝑆𝑀𝑀 𝒛𝒛1, … , 𝒛𝒛𝑛𝑛

• This can be solved using gradient descent
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Intuition behind MDS
• Suppose that there are genuine clusters in high 

dimensional data

• Points within clusters are close to each other, points 
from different clusters are far away

• MDS attempts to preserve this distance structure, so 
that clusters are (hopefully) preserved in the low 
dimensional map

28
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MDS and data representation
• Note interplay between different ways to represent 

(almost) the same information

• This workflow can be tweaked to fit different applications

29

MDS
𝒙𝒙1, … ,𝒙𝒙𝑛𝑛
𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑚𝑚

𝒛𝒛1, … , 𝒛𝒛𝑛𝑛
𝒛𝒛𝑖𝑖 ∈ 𝑹𝑹𝑙𝑙
𝑙𝑙 < 𝑚𝑚

dis(similarity) 
function

𝑑𝑑 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 → 𝑹𝑹

Pairwise dis(similarities) 
between points are 
preserved (to the 
extent possible)

Matrix of 
dis(similarities) 

between all 
pairs of points
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Exercise: Mapping cities in Uzbekistan

30

art: OpenClipartVectors at 
pixabay.com (CC0)

Tashkent Samarkand Khiva

Tashkent 270 740

Samarkand 270 600

Khiva 740 600

• Reconstruct locations of cities based on distances

Hint: Samarkand is the south most of these three. Tashkent is the east most.
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Data representation
• Switching between data representations

∗ Coordinates for each point
∗ Matrix of pairwise distances
∗ (Reconstructed) coordinates for each point

31

MDS
𝒙𝒙1, … ,𝒙𝒙𝑛𝑛
𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑚𝑚

𝒛𝒛1, … , 𝒛𝒛𝑛𝑛
𝒛𝒛𝑖𝑖 ∈ 𝑹𝑹𝑙𝑙
𝑙𝑙 < 𝑚𝑚

dis(similarity) 
function

𝑑𝑑 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 → 𝑹𝑹

Pairwise dis(similarities) 
between points are 
preserved (to the 
extent possible)

Matrix of 
dis(similarities) 

between all 
pairs of points

MDS

Compute 
distances
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MDS for recovering locations
• Switching between data representations

∗ Unknown coordinates for each point
∗ Matrix of pairwise distances
∗ Reconstructed coordinates for each point

32

MDS
𝒙𝒙1, … ,𝒙𝒙𝑛𝑛
𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑚𝑚

𝒛𝒛1, … , 𝒛𝒛𝑛𝑛
𝒛𝒛𝑖𝑖 ∈ 𝑹𝑹𝑚𝑚

dis(similarity) 
function

𝑑𝑑 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 → 𝑹𝑹

Pairwise dis(similarities) 
between points are 
preserved (to the 
extent possible)

Matrix of 
dis(similarities) 

between all 
pairs of points

MDS

No dimensionality 
reduction
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MDS for dimensionality reduction
• Switching between data representations

∗ High dimensional coordinates
∗ Matrix of pairwise distances
∗ Approximate low dimensional coordinates
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MDS
𝒙𝒙1, … ,𝒙𝒙𝑛𝑛
𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑚𝑚

𝒛𝒛1, … , 𝒛𝒛𝑛𝑛
𝒛𝒛𝑖𝑖 ∈ 𝑹𝑹𝑙𝑙
𝑙𝑙 < 𝑚𝑚

dis(similarity) 
function

𝑑𝑑 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 → 𝑹𝑹

Pairwise dis(similarities) 
between points are 
preserved (to the 
extent possible)

Matrix of 
dis(similarities) 

between all 
pairs of points

MDS

Compute 
distances
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MDS for finding a meaningful map
• Switching between data representations

∗ Set of objects, no (explicit) coordinates
∗ Matrix of pairwise distances
∗ Assign coordinates to objects
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MDS𝑛𝑛 objects 𝒛𝒛1, … , 𝒛𝒛𝑛𝑛
𝒛𝒛𝑖𝑖 ∈ 𝑹𝑹𝑙𝑙

dis(similarity) 
function
𝑑𝑑 𝑖𝑖, 𝑗𝑗 → 𝑹𝑹

Pairwise dis(similarities) 
between objects are 

preserved (to the 
extent possible)

Matrix of 
dis(similarities) 

between all 
pairs of objects

MDS

Compute 
similarities
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Examples: Mapping movies
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Termin
ator 2

Matrix Wall-E

Termin
ator 2

0.5 0.3

Matrix 0.5 0.7

Wall-E 0.3 0.7

• Ask 100 people: “do you think movies X and Y are similar?”

• Similarity score = proportion of positive answers

Terminator 2

Matrix

Wall-E

distance = 1 − similarity

MDS

Made-up example
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This lecture
• Principal components analysis

∗ Linear dimensionality reduction method
∗ Diagonalising covariance matrix

• Multidimensional scaling
∗ Non-linear dimensionality reduction methods
∗ Explicit search for a low-dimensional configuration
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