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This lecture

e Expectation Maximisation (EM) algorithm
* Introduction in general form
* Jensen’s inequality
* EM as a coordinate descent approach

 EM applied to Gaussian Mixture Model
* An iterative approach for parameter estimation
* K-means as a limiting case of EM for GMM
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Expectation Maximisation
Algorithm

For a moment, let’s put our GMM
problem aside. In this section, we’ll be
talking about generic EM. Then in the
next section, we’ll apply it to the GMM
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Motivation of EM

* Consider a parametric probabilistic model p(X|0), where X
denotes data and 0 denotes a vector of parameters

e According to MLE, we need to maximise p(X|0) as a
function of 6

* equivalently maximise log p(X|0) Z N
10}

4>
10}
e There can be a couple of issues with this task

1. Sometimes we don’t observe some of the variables needed
to compute the log likelihood

* Example: GMM cluster membership is not known in advance

2. Sometimes the form of the log likelihood is inconvenient to
work with

* Example: taking a derivative of GMM log likelihood results in a
cumbersome equation
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Key idea: Introduce latent variables

 Assume that the data consists of observed variables X and
unobserved (aka latent) variables collectively denoted as Z

e Such an approach directly models the situation where some
variables are indeed unobserved

* Introducing additional variables might seem redundant

e However, a smart choice of latent variables can make
calculations easier
* Example: in GMM, if we let z; denote true cluster membership for

each point x;, computing the likelihood with known values z is
simplified (see next section)
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Side note: Jensen’s inequality

 Compares effect of averaging before and after applying a convex function:
f(Average(x)) < Average(f(x))

e Example:

%

* % ¥

%k

* Proof follows from the definition of convexity

%

Let f be some convex function, such as f(x) = x?

Consider x = [1,2,3,4,5], then f(x) = [1,4,9,16,25]

Average of input Average(x) = 3

f(Average(x)) =9
Average of output Average(f(x)) = 12.4

Proof by induction

e @General statement:

%

If X random variable, f is a convex function

« f(E[X]D < E[f(X)]

fi
fX)
E{v} - \13
fEX}D <

.....
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Putting the latent

variables in use

We want to maximise log p(X|@). We don’t know Z, but consider an

arbitrary non-zero distribution p(Z)

logp(X|6)|= log 3., p(X, |6)

_ p(2)
= log ¥z (p(X,216) 27

(X,Z|0)
= logX; (p(2) 552

p(X,Z|6)]
p(Z) .

=log[EZ[

p(X,Z|0)]
p(Z) .

=|Ez[log p(X, Z16)] — E¢[logp(2)] |

> Ey [log

< Rule of marginal distribution
(here )., ... iterates over all
possible values of Z)

< Jensen’s inequality holds since
log(...) is a concave function
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Maximising the lower bound (1/2)

* logp(X|0) = Ez[logp(X,Z|0)] — Ez[logp(Z)]

* The right hand side (RHS) is a lower bound on the
original log likelihood

# This holds for any 8 and any non zero p(Z)
* Intuitively, we want to push the lower bound up

 This lower bound is a function of two “variables” 8 and
p(Z). We want to maximise the RHS as a function of
these “variables”

e |tis hard to optimise with respect to both at the same
time, so EM resorts to an iterative procedure
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Maximising the lower bound (2/2)

logp(X|0) = Ez[logp(X,Z|0)] — Ez[logp(Z)]

EM is essentially coordinate descent: e will
* Fix @ and optimise the lower bound for p(Z) prove this
+ Fix p(Z) and optimise for 0 shortly

The convenience of EM follows from the following /

For any point 8%, it can be shown that setting p(Z) =
p(Z|X, 0*) makes the lower bound tight

For any p(Z), the second term does not depend on @

When p(Z) = p(Z|X, 8%), the first term can usually be
maximised as a function of 8 in a closed-form

* |f not, then probably don’t use EM
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logp(X|0) = E,
N

Example (1/3)

llogp(X,Z|0)] — Ez[logp(Z)]

_/

v

G (6,p(21X,6©))

= G(G,p(Z))

log p(X10)

g ®)

10
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Example (2/3)

logp(X|0) = E,
N

llogp(X,Z|0)] — Ez[logp(Z)]

_/

~
= G(G,p(Z))

G (6,p(21X,6©))

log p(X10)

g  t+1)
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Example (3/3)

logp(X|0) = E,
N

llogp(X,Z|0)] — Ez[logp(Z)]

_/

v

G (6,p(21X,0¢+V))

= G(G,p(Z))

log p(X10)

g  t+1)

12
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EM as iterative optimisation

1. Initialisation: choose initial values of (1)

2. Update:

+  E-step: compute Q(B, H(t)) = Ezxo® llogp(X,Z|0)]
+  M-step: 9D = argmax Q(9,6®)
0

3. Termination: if no change then stop

4. Go to Step 2

This algorithm will eventually
stop (converge), but the
resulting estimate can be
only a local maximum

13
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Maximising the lower bound (2/2)

* logp(X|0) = Ez[logp(X,Z|0)] — Ez[logp(Z)]

e EM is essentially coordinate descent: we will
* Fix @ and optimise the lower bound for p(Z) prove this
* Fix p(Z) and optimise for @ now

* The convenience of EM follows from the following /

e For any point 8%, it can be shown that setting p(Z) =
p(Z|X, 0") makes the lower bound tight

 Foranyp(Z), the second term does not depend on 6

e Whenp(Z) =p(Z|X, 0"), the first term can usually be
maximised as a function of 8 in a closed-form

* |f not, then probably don’t use EM

14
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logp(X|6)|= log 3., p(X, |6)

_ p(2)
= log %, (p(x,210) 22

(X,Z|0)
= logX; (p(2) 557

p(X,Z|6)]
p(Z) .

pP(X.Z|6)]
[2 E, [log @) J

= Ez[logp(X,Z|0)] — Ez[logp(Z)]

=log[EZ[

15
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Setting a tight lower bound (1/2)

* logp(X|0) = E,

* logp(X|0) = Eg

log

log

log

log

_log

p(X.,Z IB)]
p(Z)

p(ZIX,B)p(XIH)]
p(Z)
p(Z|X,0)
p(Z)
p(Z|X,0)]
p(Z) |
p(Z|X,0)]
p(Z) |
p(Z|X,0)]
p(Z) |

+ logp(X|9)]

+ Ez[logp(X]6)]

log + log p(X|0)

+ log p(X|0)
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Setting a tight lower bound (2/2)

Ultimate aim: Lower bound of what
maximise this we want to maximise
A A
[ \ [ \
p(Z|X,0)
logp(X|0) = Egz |log + log p(X|0)
p(Z) |
Y

First, note that this term* < 0

Second, note that if p(Z) = p(Z|X, 0), then

p(Z|X,0)
5 p(Z|X,0)

Epz1x,0) [10 = Epzix,0)llog1] =0

For any 0%, setting p(Z) = p(Z|X, 8*) maximises the
lower bound on log p(X|0*) and makes it tight

*Negative Kullback-Leibler divergence between p(Z) and p(Z|X, 0)
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Estimating Parameters of
Gaussian Mixture Model

A classical application of the
Expectation Maximisation algorithm

18
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Clustering: Probabilistic interpretation

Clustering can be viewed as
identification of components of a
probability density function that
generated the data

Identifying cluster centroids
can be viewed as finding modes
of distributions
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Gaussian mixture model (GMM)

e Gaussian mixture distribution (for one data point):

k
p(x) = Z we N (x| pe, Zc)
c=1

e Herew, =0 and
Z§=1Wc =1

e Thatis, wyq,...,wy isa
probability distribution
over components

e Parameters of the model
arew,, U, %.,c=1,..,k

0.7

0.6r

0.5r

0.4;

0.3r

0.27

01r

0

1D example

-5 -4 -3 -2 - 0 1 2 3 4
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Fitting a GMM model to data

e Quraimistofindw,, u., X.,c=1,...,k that
maximise

n k
10g p(le y xn) — 2 lOg 2 WCN(xiluc' Zc)
=1 c=1

* Taking the derivative of this expression is challenging
because the log cannot be pushed inside the sum

* Let’s see how EM ideas can help

21
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Latent variables of GMM

Let z4, ..., Z,, denote true origins of the corresponding points
X1, ..., Xn. Each z; is a discrete variable that takes valuesin 1, ..., k,
where k is a number of clusters

Now compare the original log likelihood
n k
logp(xq, ..., Xp) = z log 2 we N (x| pe, Ze)
=1 c=1
With complete data log likelihood (if we knew z)
n
logp(xli ey X Z) — z log (WZiN(xi |”Zir 2:Zi))
i=1

Recall that taking a log of a normal density function results in a
tractable expression

22
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Handling uncertainty about z

 We cannot compute complete log likelihood because we don’t know z

* EM algorithm handles this uncertainty replacing log p(X, z| @) with
expectation E, 5 [logp(X, z|0)]

e This in turn requires the distribution ofp(z|X, B(t)) given current
parameter estimates

* Assuming that z; are pairwise independent,
we need to define P(z; = c|x;, 8©)

<
w

Cluster 1

=
]

 E.g., suppose x; = (—2,—2).
What is the probability that this
point originated from Cluster 1 0

Frobability Density

23
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Defining cluster responsibilities

* |tisreasonable to use

w-N(x;|lu.,%
P(Zi =c|xi,0(t)) _ c ( lluc c)

YK W (x g, Z)

* This probability is called responsibility that
cluster ¢ takes for data point i

rie = P(z; = c|x;,00) "

ty

Cluster 1

=
]

=
M

Frobability Den

0.1
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Expectation step for GMM

To simplify notation, we denote x4, ..., X,; as X, and omit superscript t
Q(6,6) = E,y g [logp(X,2|6)]
=%, p(z1X,09)logp(X,2|6)
=, p(z|X,00) Y logw, NV (x;|p,, Z;,)
= X1 Z.p(21X,09) logw, IV (x; |1z, 22,
= Nty Néo1 Tic logwy, V(x| 1z, 2,
= NiL1 Bé=1Tic logwy,

+Z 1Zk 1rlC10gN(xl|”Zl Z )

25
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Maximisation step for GMM

* |n the maximisation step, take partial derivatives of Q(H, H(t))
with respect to each of the parameters and set the derivatives
to zero to obtain new parameter estimates

. (t+1) _ 1
We R el Tic
n
o (t+1) _ di=1 TicXi
C Te
* H =y
erere = Li=1Tic

5 (1) _ Dz TuXixi _ u(”( (t))’

Tk Cc Cc

* Note that these are the estimates for step (t + 1)
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Example of fitting Gaussian Mixture model

2t . - 2

of . ,3#‘ 1 o} . .'ﬁ 1 of ‘ |
~ LY l.',,‘
2 0 2

(a) Initial (b) E-step (c) M-step

Iﬂ:

_ | ol ’F |7 |

T
%
o

0 (d) 2 —é l] (e) 2 —é [} (f) 2

(d) 2 cycles (e) 5-cyclces (f) 20-cycles
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K-means as a EM for a restricted GMM

* Consider a GMM model in which all components have the same
fixed probablllty W, = 1/k and each Gaussian has the same fixed
covariance matrix X, = o?I, where I is the identity matrix

* Insuch a model, only component centroids u. need to be
estimated

* Next approximate a probabilistic cluster responsibility ;. =
P (Zl = c|xi, U, ) ) with a deterministic assignment ;. = 1 if

centroid u( ) is cIosest to point x;, and ;. = 0 otherwise

* Such a formulation results in a E-step where u,. should be set as a
centroid of points assigned to cluster ¢

* In other words, k-means algorithm is a EM algorithm for the
restricted GMM model described above
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This lecture

e Expectation Maximisation (EM) algorithm
* Introduction in general form
* Jensen’s inequality
* EM as a coordinate descent approach

 EM applied to Gaussian Mixture Model
* An iterative approach for parameter estimation
* K-means as a limiting case of EM for GMM
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