Lecture 14. Expectation Maximisation Algorithm

COMP90051 Statistical Machine Learning

Semester 2, 2017 Lecturer: Andrey Kan

Copyright: University of Melbourne

This lecture

- Expectation Maximisation (EM) algorithm
 - Introduction in general form
 - * Jensen's inequality
 - * EM as a coordinate descent approach
- EM applied to Gaussian Mixture Model
 - * An iterative approach for parameter estimation
 - * K-means as a limiting case of EM for GMM

Expectation Maximisation Algorithm

For a moment, let's put our GMM problem aside. In this section, we'll be talking about generic EM. Then in the next section, we'll apply it to the GMM

Motivation of EM

- Consider a parametric probabilistic model $p(X|\theta)$, where X denotes data and θ denotes a vector of parameters
- According to MLE, we need to maximise $p(X|\theta)$ as a function of θ
 - * equivalently maximise $\log p(X|\theta)$
- There can be a couple of issues with this task
- Sometimes we don't observe some of the variables needed to compute the log likelihood
 - * Example: GMM cluster membership is not known in advance
- 2. Sometimes the form of the log likelihood is inconvenient to work with
 - Example: taking a derivative of GMM log likelihood results in a cumbersome equation

Key idea: Introduce latent variables

- Assume that the data consists of observed variables X and unobserved (aka *latent*) variables collectively denoted as Z
- Such an approach directly models the situation where some variables are indeed unobserved
- Introducing additional variables might seem redundant
- However, a smart choice of latent variables can make calculations easier
 - * Example: in GMM, if we let z_i denote true cluster membership for each point x_i , computing the likelihood with known values z is simplified (see next section)

Side note: Jensen's inequality

- Compares effect of averaging before and after applying a convex function: $f(Average(\mathbf{x})) \leq Average(f(\mathbf{x}))$
- Example:
 - * Let f be some convex function, such as $f(x) = x^2$
 - * Consider x = [1,2,3,4,5]', then f(x) = [1,4,9,16,25]'
 - * Average of input Average(x) = 3
 - * $f(Average(\mathbf{x})) = 9$
 - * Average of output $Average(f(\mathbf{x})) = 12.4$
- Proof follows from the definition of convexity
 - Proof by induction
- General statement:
 - * If **X** random variable, *f* is a convex function
 - * $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$

6

Putting the latent variables in use

- We want to maximise $\log p(X|\theta)$. We don't know Z, but consider an arbitrary non-zero distribution p(Z)
- $\log p(\boldsymbol{X}|\boldsymbol{\theta}) = \log \sum_{\boldsymbol{Z}} p(\boldsymbol{X}, \boldsymbol{Z}|\boldsymbol{\theta})$
- $= \log \sum_{\mathbf{Z}} \left(p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta}) \frac{p(\mathbf{Z})}{p(\mathbf{Z})} \right)$
- $= \log \sum_{\mathbf{Z}} \left(p(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{p(\mathbf{Z})} \right)$
- = log $\mathbb{E}_{Z}\left[\frac{p(X,Z|\theta)}{p(Z)}\right]$
- $\geq \mathbb{E}_{Z}\left[\log \frac{p(X,Z|\theta)}{p(Z)}\right]$

- ← Jensen's inequality holds since log(...) is a concave function
- = $\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})] \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{Z})]$

← Rule of marginal distribution (here \sum_{Z} ... iterates over all possible values of Z)

Maximising the lower bound (1/2)

- $\log p(\mathbf{X}|\boldsymbol{\theta}) \geq \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})] \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{Z})]$
- The right hand side (RHS) is a lower bound on the original log likelihood
 - * This holds for any $\boldsymbol{\theta}$ and any non zero $p(\boldsymbol{Z})$
- Intuitively, we want to push the lower bound up
- This lower bound is a function of two "variables" θ and p(Z). We want to maximise the RHS as a function of these "variables"
- It is hard to optimise with respect to both at the same time, so EM resorts to an iterative procedure

Maximising the lower bound (2/2)

- $\log p(\mathbf{X}|\boldsymbol{\theta}) \geq \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})] \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{Z})]$
- EM is essentially coordinate descent:
 - * Fix $\boldsymbol{\theta}$ and optimise the lower bound for $p(\boldsymbol{Z})$
 - * Fix $p(\mathbf{Z})$ and optimise for $\boldsymbol{\theta}$
- The convenience of EM follows from the following
- For any point θ^* , it can be shown that setting $p(Z) = p(Z|X, \theta^*)$ makes the lower bound tight
- For any $p(\mathbf{Z})$, the second term does not depend on $\boldsymbol{\theta}$
- When $p(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^*)$, the first term can usually be maximised as a function of $\boldsymbol{\theta}$ in a closed-form
 - If not, then probably don't use EM

we will prove this shortly

 $\theta^{(t)}$ $\theta^{(t+1)}$

EM as iterative optimisation

- 1. Initialisation: choose initial values of $\theta^{(1)}$
- 2. <u>Update</u>:

* E-step: compute $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) \equiv \mathbb{E}_{\boldsymbol{Z}|\boldsymbol{X}, \boldsymbol{\theta}^{(t)}}[\log p(\boldsymbol{X}, \boldsymbol{Z}|\boldsymbol{\theta})]$

* M-step:
$$\boldsymbol{\theta}^{(t+1)} = \operatorname*{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})$$

- **3.** <u>Termination</u>: if no change then stop
- 4. Go to Step 2

This algorithm will eventually stop (converge), but the resulting estimate can be only a local maximum

Maximising the lower bound (2/2)

- $\log p(\mathbf{X}|\boldsymbol{\theta}) \geq \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})] \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{Z})]$
- EM is essentially coordinate descent:
 * Fix θ and optimise the lower bound for p(Z)
 * Fix p(Z) and optimise for θ
- The convenience of EM follows from the following
- For any point θ^* , it can be shown that setting $p(Z) = p(Z|X, \theta^*)$ makes the lower bound tight
- For any $p(\mathbf{Z})$, the second term does not depend on $\boldsymbol{\theta}$
- When $p(\mathbf{Z}) = p(\mathbf{Z} | \mathbf{X}, \boldsymbol{\theta}^*)$, the first term can usually be maximised as a function of $\boldsymbol{\theta}$ in a closed-form
 - If not, then probably don't use EM

we will

prove this

now

Putting the latent variables in use

- We want to maximise $\log p(X|\theta)$. We don't know Z, but consider an arbitrary non-zero distribution p(Z)
- $\log p(\boldsymbol{X}|\boldsymbol{\theta}) = \log \sum_{\boldsymbol{Z}} p(\boldsymbol{X}, \boldsymbol{Z}|\boldsymbol{\theta})$
- $= \log \sum_{\mathbf{Z}} \left(p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta}) \frac{p(\mathbf{Z})}{p(\mathbf{Z})} \right)$
- = $\log \sum_{\mathbf{Z}} \left(p(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{p(\mathbf{Z})} \right)$
- $= \log \mathbb{E}_{Z} \left[\frac{p(X, Z | \theta)}{p(Z)} \right]$
- $\geq \mathbb{E}_{Z}\left[\log \frac{p(X, Z|\theta)}{p(Z)}\right]$

← Rule of marginal distribution (here \sum_{Z} ... iterates over all possible values of Z)

- ← Jensen's inequality holds since log(...) is a concave function
- = $\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})] \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{Z})]$

Setting a tight lower bound (1/2)

• $\log p(\boldsymbol{X}|\boldsymbol{\theta}) \geq \mathbb{E}_{\boldsymbol{Z}}\left[\log \frac{p(\boldsymbol{X},\boldsymbol{Z}|\boldsymbol{\theta})}{p(\boldsymbol{Z})}\right]$

• =
$$\mathbb{E}_{Z}\left[\log \frac{p(Z|X,\theta)p(X|\theta)}{p(Z)}\right]$$

• =
$$\mathbb{E}_{Z}\left[\log \frac{p(Z|X,\theta)}{p(Z)} + \log p(X|\theta)\right]$$

• =
$$\mathbb{E}_{Z} \left[\log \frac{p(Z|X, \theta)}{p(Z)} \right] + \mathbb{E}_{Z} [\log p(X|\theta)]$$

• =
$$\mathbb{E}_{Z}\left[\log \frac{p(Z|X,\theta)}{p(Z)}\right] + \log p(X|\theta)$$

• $\log p(\boldsymbol{X}|\boldsymbol{\theta}) \geq \mathbb{E}_{\boldsymbol{Z}}\left[\log \frac{p(\boldsymbol{Z}|\boldsymbol{X},\boldsymbol{\theta})}{p(\boldsymbol{Z})}\right] + \log p(\boldsymbol{X}|\boldsymbol{\theta})$

Setting a tight lower bound (2/2)

First, note that this term $* \leq 0$

Second, note that if $p(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$, then

$$\mathbb{E}_{p(\boldsymbol{Z}|\boldsymbol{X},\boldsymbol{\theta})}\left[\log\frac{p(\boldsymbol{Z}|\boldsymbol{X},\boldsymbol{\theta})}{p(\boldsymbol{Z}|\boldsymbol{X},\boldsymbol{\theta})}\right] = \mathbb{E}_{p(\boldsymbol{Z}|\boldsymbol{X},\boldsymbol{\theta})}[\log 1] = 0$$

For any θ^* , setting $p(Z) = p(Z|X, \theta^*)$ maximises the lower bound on $\log p(X|\theta^*)$ and makes it tight

Estimating Parameters of Gaussian Mixture Model

A classical application of the Expectation Maximisation algorithm

Clustering: Probabilistic interpretation

Clustering can be viewed as identification of components of a probability density function that generated the data

Identifying cluster centroids can be viewed as finding modes of distributions

Gaussian mixture model (GMM)

• Gaussian mixture distribution (for one data point):

$$p(\mathbf{x}) \equiv \sum_{c=1}^{\kappa} w_c \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$$

- Here $w_c \ge 0$ and $\sum_{c=1}^k w_c = 1$
- That is, w₁, ..., w_k is a probability distribution over components
- Parameters of the model are w_c , μ_c , Σ_c , c = 1, ..., k

Mixture and individual component densities are re-scaled for visualisation purposes

Fitting a GMM model to data

Our aim is to find w_c, μ_c, Σ_c, c = 1, ..., k that maximise

$$\log p(\mathbf{x}_1, \dots, \mathbf{x}_n) = \sum_{i=1}^n \log \left(\sum_{c=1}^k w_c \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c) \right)$$

- Taking the derivative of this expression is challenging because the log cannot be pushed inside the sum
- Let's see how EM ideas can help

Latent variables of GMM

- Let z₁, ..., z_n denote true origins of the corresponding points x₁, ..., x_n. Each z_i is a discrete variable that takes values in 1, ..., k, where k is a number of clusters
- Now compare the original log likelihood

$$\log p(\mathbf{x}_1, \dots, \mathbf{x}_n) = \sum_{i=1}^n \log \left(\sum_{c=1}^k w_c \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c) \right)$$

• With *complete data log likelihood* (if we knew *z*)

$$\log p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}) = \sum_{i=1}^n \log \left(w_{z_i} \mathcal{N} \left(\mathbf{x}_i | \boldsymbol{\mu}_{z_i}, \boldsymbol{\Sigma}_{z_i} \right) \right)$$

Recall that taking a log of a normal density function results in a tractable expression

Handling uncertainty about *z*

- We cannot compute complete log likelihood because we don't know z
- EM algorithm handles this uncertainty replacing $\log p(X, z | \theta)$ with expectation $\mathbb{E}_{z|X, \theta^{(t)}}[\log p(X, z | \theta)]$
- This in turn requires the distribution of $p(\mathbf{z}|\mathbf{X}, \boldsymbol{\theta}^{(t)})$ given current parameter estimates
- Assuming that z_i are pairwise independent, we need to define $P(z_i = c | x_i, \theta^{(t)})$
- E.g., suppose $x_i = (-2, -2)$. What is the probability that this point originated from Cluster 1

Defining cluster responsibilities

• It is reasonable to use

$$P(z_i = c | \boldsymbol{x}_i, \boldsymbol{\theta}^{(t)}) = \frac{w_c \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)}{\sum_{l=1}^k w_l \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)}$$

• This probability is called *responsibility* that cluster *c* takes for data point *i*

$$r_{ic} \equiv P(z_i = c | \boldsymbol{x}_i, \boldsymbol{\theta}^{(t)})$$

Expectation step for GMM

- To simplify notation, we denote x_1, \ldots, x_n as X, and omit superscript t
- $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) \equiv \mathbb{E}_{\boldsymbol{z}|\boldsymbol{X}, \boldsymbol{\theta}^{(t)}}[\log p(\boldsymbol{X}, \boldsymbol{z}|\boldsymbol{\theta})]$
- = $\sum_{\boldsymbol{z}} p(\boldsymbol{z}|\boldsymbol{X}, \boldsymbol{\theta}^{(t)}) \log p(\boldsymbol{X}, \boldsymbol{z}|\boldsymbol{\theta})$
- = $\sum_{\boldsymbol{z}} p(\boldsymbol{z}|\boldsymbol{X}, \boldsymbol{\theta}^{(t)}) \sum_{i=1}^{n} \log w_{z_i} \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_{z_i}, \boldsymbol{\Sigma}_{z_i})$
- = $\sum_{i=1}^{n} \sum_{\mathbf{z}} p(\mathbf{z} | \mathbf{X}, \boldsymbol{\theta}^{(t)}) \log w_{z_i} \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_{z_i}, \boldsymbol{\Sigma}_{z_i})$
- = $\sum_{i=1}^{n} \sum_{c=1}^{k} r_{ic} \log w_{z_i} \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_{z_i}, \boldsymbol{\Sigma}_{z_i})$
- $= \sum_{i=1}^{n} \sum_{c=1}^{k} r_{ic} \log w_{z_i}$
- + $\sum_{i=1}^{n} \sum_{c=1}^{k} r_{ic} \log \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_{z_i}, \boldsymbol{\Sigma}_{z_i})$

Maximisation step for GMM

• In the maximisation step, take partial derivatives of $Q(\theta, \theta^{(t)})$ with respect to each of the parameters and set the derivatives to zero to obtain new parameter estimates

•
$$w_c^{(t+1)} = \frac{1}{n} \sum_{i=1}^n r_{ic}$$

•
$$\boldsymbol{\mu}_{c}^{(t+1)} = \frac{\sum_{i=1}^{n} r_{ic} x_{i}}{r_{c}}$$

* Here $r_{c} \equiv \sum_{i=1}^{n} r_{ic}$

•
$$\boldsymbol{\Sigma}_{c}^{(t+1)} = \frac{\sum_{i=1}^{n} r_{ik} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'}{r_{k}} - \boldsymbol{\mu}_{c}^{(t)} \left(\boldsymbol{\mu}_{c}^{(t)}\right)'$$

• Note that these are the estimates for step (t + 1)

Example of fitting Gaussian Mixture model

K-means as a EM for a restricted GMM

- Consider a GMM model in which all components have the same fixed probability $w_c = 1/k$, and each Gaussian has the same fixed covariance matrix $\Sigma_c = \sigma^2 I$, where I is the identity matrix
- In such a model, only component centroids μ_c need to be estimated
- Next approximate a probabilistic cluster responsibility $r_{ic} = P\left(z_i = c | \boldsymbol{x}_i, \boldsymbol{\mu}_c^{(t)}\right)$ with a deterministic assignment $r_{ic} = 1$ if centroid $\boldsymbol{\mu}_c^{(t)}$ is closest to point \boldsymbol{x}_i , and $r_{ic} = 0$ otherwise
- Such a formulation results in a E-step where μ_c should be set as a centroid of points assigned to cluster c
- In other words, k-means algorithm is a EM algorithm for the restricted GMM model described above

This lecture

- Expectation Maximisation (EM) algorithm
 - Introduction in general form
 - * Jensen's inequality
 - * EM as a coordinate descent approach
- EM applied to Gaussian Mixture Model
 - * An iterative approach for parameter estimation
 - * K-means as a limiting case of EM for GMM