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This lecture
• Expectation Maximisation (EM) algorithm

∗ Introduction in general form
∗ Jensen’s inequality
∗ EM as a coordinate descent approach

• EM applied to Gaussian Mixture Model
∗ An iterative approach for parameter estimation
∗ K-means as a limiting case of EM for GMM
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Expectation Maximisation 
Algorithm

For a moment, let’s put our GMM 
problem aside. In this section, we’ll be 
talking about generic EM. Then in the 

next section, we’ll apply it to the GMM

3
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Motivation of EM
• Consider a parametric probabilistic model 𝑝𝑝 𝑿𝑿|𝜽𝜽 , where 𝑿𝑿

denotes data and 𝜽𝜽 denotes a vector of parameters

• According to MLE, we need to maximise 𝑝𝑝 𝑿𝑿|𝜽𝜽 as a 
function of 𝜽𝜽
∗ equivalently maximise log𝑝𝑝 𝑿𝑿|𝜽𝜽

• There can be a couple of issues with this task

1. Sometimes we don’t observe some of the variables needed 
to compute the log likelihood
∗ Example: GMM cluster membership is not known in advance

2. Sometimes the form of the log likelihood is inconvenient to 
work with
∗ Example: taking a derivative of GMM log likelihood results in a 

cumbersome equation

4art: Ebrahim at Wikimedia Commons (CC4)
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Key idea: Introduce latent variables
• Assume that the data consists of observed variables 𝑿𝑿 and 

unobserved (aka latent) variables collectively denoted as 𝒁𝒁

• Such an approach directly models the situation where some 
variables are indeed unobserved

• Introducing additional variables might seem redundant

• However, a smart choice of latent variables can make 
calculations easier
∗ Example: in GMM, if we let 𝑧𝑧𝑖𝑖 denote true cluster membership for 

each point 𝒙𝒙𝑖𝑖, computing the likelihood with known values 𝒛𝒛 is 
simplified (see next section)
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Side note: Jensen’s inequality
• Compares effect of averaging before and after applying a convex function: 

𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝒙𝒙 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓 𝒙𝒙

• Example:
∗ Let 𝑓𝑓 be some convex function, such as 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2
∗ Consider 𝒙𝒙 = 1,2,3,4,5 ′, then 𝑓𝑓 𝒙𝒙 = 1,4,9,16,25 ′

∗ Average of input 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝒙𝒙 = 3
∗ 𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝒙𝒙 = 9
∗ Average of output 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓 𝒙𝒙 = 12.4

• Proof follows from the definition of convexity
∗ Proof by induction

• General statement:
∗ If 𝑿𝑿 random variable, 𝑓𝑓 is a convex function
∗ 𝑓𝑓 𝔼𝔼 𝑿𝑿 ≤ 𝔼𝔼 𝑓𝑓 𝑿𝑿

6plot: MHz’as at Wikimedia Commons (public domain)
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Putting the latent variables in use
• We want to maximise log𝑝𝑝 𝑿𝑿|𝜽𝜽 . We don’t know 𝒁𝒁, but consider an 

arbitrary non-zero distribution 𝑝𝑝(𝒁𝒁)

• log𝑝𝑝 𝑿𝑿|𝜽𝜽 = log∑𝒁𝒁𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽

• = log∑𝒁𝒁 𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽 𝑝𝑝(𝒁𝒁)
𝑝𝑝(𝒁𝒁)

• = log∑𝒁𝒁 𝑝𝑝(𝒁𝒁) 𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽
𝑝𝑝(𝒁𝒁)

• = log𝔼𝔼𝒁𝒁
𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽
𝑝𝑝(𝒁𝒁)

• ≥ 𝔼𝔼𝒁𝒁 log 𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽
𝑝𝑝(𝒁𝒁)

• = 𝔼𝔼𝒁𝒁 log𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽 − 𝔼𝔼𝒁𝒁 log𝑝𝑝(𝒁𝒁)

7

 Rule of marginal distribution 
(here ∑𝒁𝒁… iterates over all 

possible values of 𝒁𝒁)

 Jensen’s inequality holds since 
log … is a concave function
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Maximising the lower bound (1/2)
• log𝑝𝑝 𝑿𝑿|𝜽𝜽 ≥ 𝔼𝔼𝒁𝒁 log𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽 − 𝔼𝔼𝒁𝒁 log𝑝𝑝(𝒁𝒁)

• The right hand side (RHS) is a lower bound on the 
original log likelihood
∗ This holds for any 𝜽𝜽 and any non zero 𝑝𝑝(𝒁𝒁)

• Intuitively, we want to push the lower bound up

• This lower bound is a function of two “variables” 𝜽𝜽 and 
𝑝𝑝 𝒁𝒁 . We want to maximise the RHS as a function of 
these “variables”

• It is hard to optimise with respect to both at the same 
time, so EM resorts to an iterative procedure

8
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Maximising the lower bound (2/2)
• log𝑝𝑝 𝑿𝑿|𝜽𝜽 ≥ 𝔼𝔼𝒁𝒁 log𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽 − 𝔼𝔼𝒁𝒁 log𝑝𝑝(𝒁𝒁)

• EM is essentially coordinate descent:
∗ Fix 𝜽𝜽 and optimise the lower bound for 𝑝𝑝 𝒁𝒁
∗ Fix 𝑝𝑝 𝒁𝒁 and optimise for 𝜽𝜽

• The convenience of EM follows from the following

• For any point 𝜽𝜽∗, it can be shown that setting 𝑝𝑝 𝒁𝒁 =
𝑝𝑝(𝒁𝒁|𝑿𝑿,𝜽𝜽∗) makes the lower bound tight

• For any 𝑝𝑝(𝒁𝒁), the second term does not depend on 𝜽𝜽
• When 𝑝𝑝 𝒁𝒁 = 𝑝𝑝(𝒁𝒁|𝑿𝑿,𝜽𝜽∗), the first term can usually be 

maximised as a function of 𝜽𝜽 in a closed-form
∗ If not, then probably don’t use EM

9

we will 
prove this 

shortly
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Example (1/3)

10

log 𝑝𝑝 𝑿𝑿|𝜽𝜽 ≥ 𝔼𝔼𝒁𝒁 log𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽 − 𝔼𝔼𝒁𝒁 log𝑝𝑝(𝒁𝒁)

𝜃𝜃

log𝑝𝑝 𝑿𝑿|𝜽𝜽

𝜃𝜃(𝑡𝑡)

≡ 𝐺𝐺 𝜽𝜽, 𝑝𝑝 𝒁𝒁

𝐺𝐺 𝜃𝜃, 𝑝𝑝1 𝒁𝒁

𝐺𝐺 𝜃𝜃, 𝑝𝑝2 𝒁𝒁

𝐺𝐺 𝜃𝜃, 𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜃𝜃(𝑡𝑡)
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Example (2/3)

11

log 𝑝𝑝 𝑿𝑿|𝜽𝜽 ≥ 𝔼𝔼𝒁𝒁 log𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽 − 𝔼𝔼𝒁𝒁 log𝑝𝑝(𝒁𝒁)

𝜃𝜃

log𝑝𝑝 𝑿𝑿|𝜽𝜽

𝜃𝜃(𝑡𝑡)

≡ 𝐺𝐺 𝜽𝜽, 𝑝𝑝 𝒁𝒁

𝐺𝐺 𝜃𝜃, 𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜃𝜃(𝑡𝑡)

𝜃𝜃(𝑡𝑡+1)
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Example (3/3)

12

log 𝑝𝑝 𝑿𝑿|𝜽𝜽 ≥ 𝔼𝔼𝒁𝒁 log𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽 − 𝔼𝔼𝒁𝒁 log𝑝𝑝(𝒁𝒁)

𝜃𝜃

log𝑝𝑝 𝑿𝑿|𝜽𝜽

𝜃𝜃(𝑡𝑡)

≡ 𝐺𝐺 𝜽𝜽, 𝑝𝑝 𝒁𝒁

𝐺𝐺 𝜃𝜃, 𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜃𝜃(𝑡𝑡+1)

𝜃𝜃(𝑡𝑡+1)
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EM as iterative optimisation
1. Initialisation: choose initial values of 𝜽𝜽(1)

2. Update:
∗ E-step: compute 𝑄𝑄 𝜽𝜽,𝜽𝜽 𝑡𝑡 ≡ 𝔼𝔼𝒁𝒁|𝑿𝑿,𝜽𝜽(𝑡𝑡) log𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽

∗ M-step: 𝜽𝜽(𝑡𝑡+1) = argmax
𝜽𝜽

𝑄𝑄 𝜽𝜽,𝜽𝜽 𝑡𝑡

3. Termination: if no change then stop

4. Go to Step 2

13

This algorithm will eventually 
stop (converge), but the 
resulting estimate can be 
only a local maximum
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Maximising the lower bound (2/2)
• log𝑝𝑝 𝑿𝑿|𝜽𝜽 ≥ 𝔼𝔼𝒁𝒁 log𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽 − 𝔼𝔼𝒁𝒁 log𝑝𝑝(𝒁𝒁)

• EM is essentially coordinate descent:
∗ Fix 𝜽𝜽 and optimise the lower bound for 𝑝𝑝 𝒁𝒁
∗ Fix 𝑝𝑝 𝒁𝒁 and optimise for 𝜽𝜽

• The convenience of EM follows from the following

• For any point 𝜽𝜽∗, it can be shown that setting 𝑝𝑝 𝒁𝒁 =
𝑝𝑝(𝒁𝒁|𝑿𝑿,𝜽𝜽∗) makes the lower bound tight

• For any 𝑝𝑝(𝒁𝒁), the second term does not depend on 𝜽𝜽
• When 𝑝𝑝 𝒁𝒁 = 𝑝𝑝(𝒁𝒁|𝑿𝑿,𝜽𝜽∗), the first term can usually be 

maximised as a function of 𝜽𝜽 in a closed-form
∗ If not, then probably don’t use EM

14

we will 
prove this 

now
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Putting the latent variables in use
• We want to maximise log𝑝𝑝 𝑿𝑿|𝜽𝜽 . We don’t know 𝒁𝒁, but consider an 

arbitrary non-zero distribution 𝑝𝑝(𝒁𝒁)

• log𝑝𝑝 𝑿𝑿|𝜽𝜽 = log∑𝒁𝒁𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽

• = log∑𝒁𝒁 𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽 𝑝𝑝(𝒁𝒁)
𝑝𝑝(𝒁𝒁)

• = log∑𝒁𝒁 𝑝𝑝(𝒁𝒁) 𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽
𝑝𝑝(𝒁𝒁)

• = log𝔼𝔼𝒁𝒁
𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽
𝑝𝑝(𝒁𝒁)

• ≥ 𝔼𝔼𝒁𝒁 log 𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽
𝑝𝑝(𝒁𝒁)

• = 𝔼𝔼𝒁𝒁 log𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽 − 𝔼𝔼𝒁𝒁 log𝑝𝑝(𝒁𝒁)

15

 Rule of marginal distribution 
(here ∑𝒁𝒁… iterates over all 

possible values of 𝒁𝒁)

 Jensen’s inequality holds since 
log … is a concave function
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Setting a tight lower bound (1/2)

16

• = 𝔼𝔼𝒁𝒁 log 𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜽𝜽 𝑝𝑝 𝑿𝑿|𝜽𝜽
𝑝𝑝(𝒁𝒁)

• = 𝔼𝔼𝒁𝒁 log 𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜽𝜽
𝑝𝑝(𝒁𝒁)

+ 𝔼𝔼𝒁𝒁 log𝑝𝑝 𝑿𝑿|𝜽𝜽

• log𝑝𝑝 𝑿𝑿|𝜽𝜽 ≥ 𝔼𝔼𝒁𝒁 log 𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜽𝜽
𝑝𝑝(𝒁𝒁)

+ log𝑝𝑝 𝑿𝑿|𝜽𝜽

• log𝑝𝑝 𝑿𝑿|𝜽𝜽 ≥ 𝔼𝔼𝒁𝒁 log 𝑝𝑝 𝑿𝑿,𝒁𝒁|𝜽𝜽
𝑝𝑝(𝒁𝒁)

• = 𝔼𝔼𝒁𝒁 log 𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜽𝜽
𝑝𝑝(𝒁𝒁)

+ log 𝑝𝑝 𝑿𝑿|𝜽𝜽

• = 𝔼𝔼𝒁𝒁 log 𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜽𝜽
𝑝𝑝(𝒁𝒁)

+ log 𝑝𝑝 𝑿𝑿|𝜽𝜽
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Setting a tight lower bound (2/2)

17

log𝑝𝑝 𝑿𝑿|𝜽𝜽 ≥ 𝔼𝔼𝒁𝒁 log
𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜽𝜽
𝑝𝑝(𝒁𝒁)

+ log𝑝𝑝 𝑿𝑿|𝜽𝜽

Ultimate aim: 
maximise this

Lower bound of what 
we want to maximise

Second, note that if 𝑝𝑝 𝒁𝒁 = 𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜽𝜽 , then

𝔼𝔼𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜽𝜽 log
𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜽𝜽
𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜽𝜽

= 𝔼𝔼𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜽𝜽 log 1 = 0

For any 𝜽𝜽∗, setting 𝑝𝑝 𝒁𝒁 = 𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜽𝜽∗ maximises the 
lower bound on log 𝑝𝑝 𝑿𝑿|𝜽𝜽∗ and makes it tight

First, note that this term* ≤ 0

*Negative Kullback-Leibler divergence between 𝑝𝑝(𝒁𝒁) and 𝑝𝑝 𝒁𝒁|𝑿𝑿,𝜽𝜽
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Estimating Parameters of 
Gaussian Mixture Model

A classical application of the 
Expectation Maximisation algorithm

18
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Clustering: Probabilistic interpretation

19

Clustering can be viewed as 
identification of components of a 
probability density function that 
generated the data

Cluster 1Cluster 2

Identifying cluster centroids 
can be viewed as finding modes 
of distributions
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Gaussian mixture model (GMM)

20

• Gaussian mixture distribution (for one data point): 

𝑝𝑝 𝒙𝒙 ≡�
𝑐𝑐=1

𝑘𝑘

𝑤𝑤𝑐𝑐𝒩𝒩 𝒙𝒙|𝝁𝝁𝑐𝑐 ,𝚺𝚺𝑐𝑐

1D example• Here 𝑤𝑤𝑐𝑐 ≥ 0 and 
∑𝑐𝑐=1𝑘𝑘 𝑤𝑤𝑐𝑐 = 1

• That is, 𝑤𝑤1, … ,𝑤𝑤𝑘𝑘 is a 
probability distribution 
over components

• Parameters of the model 
are 𝑤𝑤𝑐𝑐, 𝝁𝝁𝑐𝑐, 𝚺𝚺𝑐𝑐, 𝑐𝑐 = 1, … , 𝑘𝑘

Mixture and individual component densities 
are re-scaled for visualisation purposes

Figure: Bishop
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Fitting a GMM model to data
• Our aim is to find 𝑤𝑤𝑐𝑐, 𝝁𝝁𝑐𝑐, 𝚺𝚺𝑐𝑐, 𝑐𝑐 = 1, … ,𝑘𝑘 that 

maximise

log 𝑝𝑝 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

log �
𝑐𝑐=1

𝑘𝑘

𝑤𝑤𝑐𝑐𝒩𝒩 𝒙𝒙𝑖𝑖|𝝁𝝁𝑐𝑐 ,𝚺𝚺𝑐𝑐

• Taking the derivative of this expression is challenging 
because the log cannot be pushed inside the sum

• Let’s see how EM ideas can help

21
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Latent variables of GMM
• Let 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛 denote true origins of the corresponding points 
𝒙𝒙1, … ,𝒙𝒙𝑛𝑛. Each 𝑧𝑧𝑖𝑖 is a discrete variable that takes values in 1, … , 𝑘𝑘, 
where 𝑘𝑘 is a number of clusters

• Now compare the original log likelihood

log𝑝𝑝 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

log �
𝑐𝑐=1

𝑘𝑘

𝑤𝑤𝑐𝑐𝒩𝒩 𝒙𝒙𝑖𝑖|𝝁𝝁𝑐𝑐 ,𝚺𝚺𝑐𝑐

• With complete data log likelihood (if we knew 𝒛𝒛)

log𝑝𝑝 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛, 𝒛𝒛 = �
𝑖𝑖=1

𝑛𝑛

log 𝑤𝑤𝑧𝑧𝑖𝑖𝒩𝒩 𝒙𝒙𝑖𝑖|𝝁𝝁𝑧𝑧𝑖𝑖 ,𝚺𝚺𝑧𝑧𝑖𝑖

• Recall that taking a log of a normal density function results in a 
tractable expression

22
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Handling uncertainty about 𝒛𝒛
• We cannot compute complete log likelihood because we don’t know 𝒛𝒛

• EM algorithm handles this uncertainty replacing log 𝑝𝑝 𝑿𝑿, 𝒛𝒛|𝜽𝜽 with 
expectation 𝔼𝔼𝒛𝒛|𝑿𝑿,𝜽𝜽 𝑡𝑡 log𝑝𝑝 𝑿𝑿, 𝒛𝒛|𝜽𝜽

• This in turn requires the distribution of 𝑝𝑝 𝒛𝒛|𝑿𝑿,𝜽𝜽(𝑡𝑡) given current 
parameter estimates
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• E.g., suppose 𝒙𝒙𝑖𝑖 = (−2,−2). 
What is the probability that this 
point originated from Cluster 1

Cluster 1

Cluster 2

• Assuming that 𝑧𝑧𝑖𝑖 are pairwise independent, 
we need to define 𝑃𝑃 𝑧𝑧𝑖𝑖 = 𝑐𝑐|𝒙𝒙𝑖𝑖 ,𝜽𝜽(𝑡𝑡)
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Cluster 1

Cluster 2

Defining cluster responsibilities
• It is reasonable to use

𝑃𝑃 𝑧𝑧𝑖𝑖 = 𝑐𝑐|𝒙𝒙𝑖𝑖 ,𝜽𝜽(𝑡𝑡) =
𝑤𝑤𝑐𝑐𝒩𝒩 𝒙𝒙𝑖𝑖|𝝁𝝁𝑐𝑐 ,𝚺𝚺𝑐𝑐

∑𝑙𝑙=1𝑘𝑘 𝑤𝑤𝑙𝑙𝒩𝒩 𝒙𝒙𝑖𝑖|𝝁𝝁𝑙𝑙 ,𝚺𝚺𝑙𝑙
• This probability is called responsibility that 

cluster 𝑐𝑐 takes for data point 𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖 ≡ 𝑃𝑃 𝑧𝑧𝑖𝑖 = 𝑐𝑐|𝒙𝒙𝑖𝑖 ,𝜽𝜽(𝑡𝑡)
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Expectation step for GMM
• To simplify notation, we denote 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛 as 𝑿𝑿, and omit superscript 𝑡𝑡

• 𝑄𝑄 𝜽𝜽,𝜽𝜽 𝑡𝑡 ≡ 𝔼𝔼𝒛𝒛|𝑿𝑿,𝜽𝜽 𝑡𝑡 log𝑝𝑝 𝑿𝑿, 𝒛𝒛|𝜽𝜽

• = ∑𝒛𝒛𝑝𝑝 𝒛𝒛|𝑿𝑿,𝜽𝜽(𝑡𝑡) log𝑝𝑝 𝑿𝑿, 𝒛𝒛|𝜽𝜽

• = ∑𝒛𝒛𝑝𝑝 𝒛𝒛|𝑿𝑿,𝜽𝜽(𝑡𝑡) ∑𝑖𝑖=1𝑛𝑛 log𝑤𝑤𝑧𝑧𝑖𝑖𝒩𝒩 𝒙𝒙𝑖𝑖|𝝁𝝁𝑧𝑧𝑖𝑖 ,𝚺𝚺𝑧𝑧𝑖𝑖

• = ∑𝑖𝑖=1𝑛𝑛 ∑𝒛𝒛 𝑝𝑝 𝒛𝒛|𝑿𝑿,𝜽𝜽(𝑡𝑡) log𝑤𝑤𝑧𝑧𝑖𝑖𝒩𝒩 𝒙𝒙𝑖𝑖|𝝁𝝁𝑧𝑧𝑖𝑖 ,𝚺𝚺𝑧𝑧𝑖𝑖

• = ∑𝑖𝑖=1𝑛𝑛 ∑𝑐𝑐=1𝑘𝑘 𝑟𝑟𝑖𝑖𝑖𝑖 log𝑤𝑤𝑧𝑧𝑖𝑖𝒩𝒩 𝒙𝒙𝑖𝑖|𝝁𝝁𝑧𝑧𝑖𝑖 ,𝚺𝚺𝑧𝑧𝑖𝑖

• = ∑𝑖𝑖=1𝑛𝑛 ∑𝑐𝑐=1𝑘𝑘 𝑟𝑟𝑖𝑖𝑖𝑖 log𝑤𝑤𝑧𝑧𝑖𝑖

• +∑𝑖𝑖=1𝑛𝑛 ∑𝑐𝑐=1𝑘𝑘 𝑟𝑟𝑖𝑖𝑖𝑖 log𝒩𝒩 𝒙𝒙𝑖𝑖|𝝁𝝁𝑧𝑧𝑖𝑖 ,𝚺𝚺𝑧𝑧𝑖𝑖
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Maximisation step for GMM
• In the maximisation step, take partial derivatives of 𝑄𝑄 𝜽𝜽,𝜽𝜽 𝑡𝑡

with respect to each of the parameters and set the derivatives 
to zero to obtain new parameter estimates

• 𝑤𝑤𝑐𝑐
(𝑡𝑡+1) = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑟𝑟𝑖𝑖𝑖𝑖

• 𝝁𝝁𝑐𝑐
(𝑡𝑡+1) = ∑𝑖𝑖=1

𝑛𝑛 𝑟𝑟𝑖𝑖𝑖𝑖𝒙𝒙𝑖𝑖
𝑟𝑟𝑐𝑐

∗ Here 𝑟𝑟𝑐𝑐 ≡ ∑𝑖𝑖=1𝑛𝑛 𝑟𝑟𝑖𝑖𝑖𝑖

• 𝚺𝚺𝑐𝑐
(𝑡𝑡+1) = ∑𝑖𝑖=1

𝑛𝑛 𝑟𝑟𝑖𝑖𝑖𝑖𝒙𝒙𝑖𝑖𝒙𝒙𝑖𝑖
′

𝑟𝑟𝑘𝑘
− 𝝁𝝁𝑐𝑐

𝑡𝑡 𝝁𝝁𝑐𝑐
𝑡𝑡 ′

• Note that these are the estimates for step (𝑡𝑡 + 1)
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Example of fitting Gaussian Mixture model

27
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K-means as a EM for a restricted GMM
• Consider a GMM model in which all components have the same 

fixed probability 𝑤𝑤𝑐𝑐 = 1/𝑘𝑘, and each Gaussian has the same fixed 
covariance matrix 𝚺𝚺𝑐𝑐 = 𝜎𝜎2𝑰𝑰, where 𝑰𝑰 is the identity matrix

• In such a model, only component centroids 𝝁𝝁𝑐𝑐 need to be 
estimated

• Next approximate a probabilistic cluster responsibility 𝑟𝑟𝑖𝑖𝑖𝑖 =
𝑃𝑃 𝑧𝑧𝑖𝑖 = 𝑐𝑐|𝒙𝒙𝑖𝑖 ,𝝁𝝁𝑐𝑐

(𝑡𝑡) with a deterministic assignment 𝑟𝑟𝑖𝑖𝑖𝑖 = 1 if 
centroid 𝝁𝝁𝑐𝑐

(𝑡𝑡) is closest to point 𝒙𝒙𝑖𝑖, and 𝑟𝑟𝑖𝑖𝑖𝑖 = 0 otherwise

• Such a formulation results in a E-step where 𝝁𝝁𝑐𝑐 should be set as a 
centroid of points assigned to cluster 𝑐𝑐

• In other words, k-means algorithm is a EM algorithm for the 
restricted GMM model described above
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This lecture
• Expectation Maximisation (EM) algorithm

∗ Introduction in general form
∗ Jensen’s inequality
∗ EM as a coordinate descent approach

• EM applied to Gaussian Mixture Model
∗ An iterative approach for parameter estimation
∗ K-means as a limiting case of EM for GMM
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