Lecture 11. Kernel Methods

COMP90051 Statistical Machine Learning

Semester 2, 2017
Lecturer: Andrey Kan

This lecture

- The kernel trick
* Efficient computation of a dot product in transformed feature space
- Modular learning
* Separating the "learning module" from feature space transformation
- Constructing kernels
* An overview of popular kernels and their properties
- Kernel as a similarity measure
* Extending machine learning beyond conventional data structure

The Kernel Trick

An approach that we introduce in the context of SVMs. However, this approach is compatible with a large number of methods

Handling non-linear data with SVM

- Method 1: Soft margin SVM
- Method 2: Feature space transformation
* Map data into a new feature space
* Run hard margin or soft margin SVM in new space
* Decision boundary is non-linear in original space

Example of feature transformation

- Consider a binary classification problem
- Each example has features $\left[x_{1}, x_{2}\right]$
- Not linearly separable

- Now 'add' a feature $x_{3}=x^{2}+x_{2}^{2}$
- Each point is now $\left[x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right]$
- Linearly separable!

Naïve workflow

- Choose/design a linear model
- Choose/design a high-dimensional transformation $\varphi(\boldsymbol{x})$
* Hoping that after adding a lot of various features some of them will make the data linearly separable
- For each training example, and for each new instance compute $\varphi(\boldsymbol{x})$
- Train classifier/Do predictions
- Problem: impractical/impossible to compute $\varphi(\boldsymbol{x})$ for high/infinite-dimensional $\varphi(\boldsymbol{x})$

Hard margin SVM

- Training: finding λ that solve

$$
\begin{gathered}
\underset{\lambda}{\operatorname{argmax}} \sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{\prime} \boldsymbol{x}_{j} \\
\text { s.t. } \lambda_{i} \geq 0 \text { and } \sum_{i=1}^{n} \lambda_{i} y_{i}=0
\end{gathered}
$$

- Making predictions: classify new instance \boldsymbol{x} based on the sign of

$$
s=b^{*}+\sum_{i=1}^{n} \lambda_{i}^{*} y_{i}{\underline{\boldsymbol{x}_{i}^{\prime} \boldsymbol{x}}}^{\text {dot-product }}
$$

- Here b^{*} can be found by noting that for arbitrary training example j we must have $y_{j}\left(b^{*}+\sum_{i=1}^{n} \lambda_{i}^{*} y_{i} \boldsymbol{x}_{i}^{\prime} \boldsymbol{x}_{j}\right)=1$

Hard margin SVM

- Training: finding λ that solve

$$
\begin{aligned}
\underset{\lambda}{\operatorname{argmax}} & \sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} \varphi\left(\boldsymbol{x}_{i}\right)^{\prime} \varphi\left(\boldsymbol{x}_{j}\right) \\
& \text { s.t. } \lambda_{i} \geq 0 \text { and } \sum_{i=1}^{n} \lambda_{i} y_{i}=0
\end{aligned}
$$

- Making predictions: classify new instance \boldsymbol{x} based on the sign of

$$
s=b^{*}+\sum_{i=1}^{n} \lambda_{i}^{*} y_{i} \varphi\left(\boldsymbol{x}_{i}\right)^{\prime} \varphi(\boldsymbol{x})
$$

- Here b^{*} can be found by noting that for arbitrary training example j we must have $y_{j}\left(b^{*}+\sum_{i=1}^{n} \lambda_{i}^{*} y_{i} \varphi\left(\boldsymbol{x}_{i}\right)^{\prime} \varphi\left(\boldsymbol{x}_{j}\right)\right)=1$

Observation: Dot product representation

- Both parameter estimation and computing predictions depend on data only in a form of a dot product
* In original space $\boldsymbol{u}^{\prime} \boldsymbol{v}=\sum_{i=1}^{m} u_{i} v_{i}$
* In transformed space $\varphi(\boldsymbol{u})^{\prime} \varphi(\boldsymbol{v})=\sum_{i=1}^{l} \varphi(\boldsymbol{u})_{i} \varphi(\boldsymbol{v})_{i}$
- Kernel is a function that can be expressed as a dot product in some feature space $K(\boldsymbol{u}, \boldsymbol{v})=\varphi(\boldsymbol{u})^{\prime} \varphi(\boldsymbol{v})$

Example of a kernel

- For some feature maps there exists a shortcut computation of the dot product via kernels
- For example, consider two vectors original space $\boldsymbol{u}=\left[u_{1}\right]$ and $v=\left[v_{1}\right]$ and a transformation $\varphi(\boldsymbol{x})=\left[x_{1}^{2}, \sqrt{2 c} x_{1}, c\right]$
- So $\varphi(\boldsymbol{u})=\left[u_{1}^{2}, \sqrt{2 c} u_{1}, c\right]^{\prime}$ and $\varphi(\boldsymbol{v})=\left[v_{1}^{2}, \sqrt{2 c} v_{1}, c\right]^{\prime}$
- Then $\varphi(\boldsymbol{u})^{\prime} \varphi(\boldsymbol{v})=\left(u_{1}^{2} v_{1}^{2}+2 c u_{1} v_{1}+c^{2}\right)$
- This can be alternatively computed as

$$
\varphi(\boldsymbol{u})^{\prime} \varphi(\boldsymbol{v})=\left(u_{1} v_{1}+c\right)^{2}
$$

- Here $K(\boldsymbol{u}, \boldsymbol{v})=\left(u_{1} v_{1}+c\right)^{2}$ is a kernel

The kernel trick

- Consider two training points \boldsymbol{x}_{i} and \boldsymbol{x}_{j} and their dot product in the transformed space. Define this quantity as $k_{i j} \equiv \varphi\left(\boldsymbol{x}_{i}\right)^{\prime} \varphi\left(\boldsymbol{x}_{j}\right)$
- This can be computed as:

1. Compute $\varphi\left(\boldsymbol{x}_{i}\right)^{\prime}$
2. Compute $\varphi\left(\boldsymbol{x}_{j}\right)$
3. Compute $k_{i j}=\varphi\left(\boldsymbol{x}_{i}\right)^{\prime} \varphi\left(\boldsymbol{x}_{j}\right)$

- However, for some transformations φ, there exists a function that gives exactly the same answer $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=k_{i j}$
* In other words, sometimes there is a different way ("shortcut") to compute the same quantity $k_{i j}$
- This different way, does not involve steps 1-3. In particular, we do not need to compute $\varphi\left(\boldsymbol{x}_{i}\right)$ and $\varphi\left(\boldsymbol{x}_{j}\right)$
* Usually kernels can be computed in $O(m)$, whereas computing $\varphi(\boldsymbol{x})$ requires $O(l)$, where $l \gg m$ or $l=\infty$

Hard margin SVM

- Training: finding λ that solve

$$
\begin{aligned}
\underset{\lambda}{\operatorname{argmax}} & \sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} \varphi\left(\boldsymbol{x}_{i}\right)^{\prime} \varphi\left(\boldsymbol{x}_{j}\right) \\
& \text { s.t. } \lambda_{i} \geq 0 \text { and } \sum_{i=1}^{n} \lambda_{i} y_{i}=0
\end{aligned}
$$

- Making predictions: classify new instance \boldsymbol{x} based on the sign of

$$
s=b^{*}+\sum_{i=1}^{n} \lambda_{i}^{*} y_{i} \varphi\left(\boldsymbol{x}_{i}\right)^{\prime} \varphi(\boldsymbol{x})
$$

- Here b^{*} can be found by noting that for arbitrary training example j we must have $y_{j}\left(b^{*}+\sum_{i=1}^{n} \lambda_{i}^{*} y_{i} \varphi\left(\boldsymbol{x}_{i}\right)^{\prime} \varphi\left(\boldsymbol{x}_{j}\right)\right)=1$

Hard margin SVM

- Training: finding λ that solve

$$
\begin{aligned}
& \underset{\lambda}{\operatorname{argmax}} \sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) \\
& \text { s.t. } \lambda_{i} \geq 0 \text { and } \sum_{i=1}^{n} \lambda_{i} y_{i}=0
\end{aligned}
$$

- Making predictions: classify new instance \boldsymbol{x} based on the sign of

$$
s=b^{*}+\sum_{i=1}^{n} \lambda_{i}^{*} y_{i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{\boldsymbol{j}}\right) \quad \begin{aligned}
& \text { feature mapping is } \\
& \text { implied by kernel }
\end{aligned}
$$

- Here b^{*} can be found by noting that for arbitrary training example j we must have $y_{j}\left(b^{*}+\sum_{i=1}^{n} \lambda_{i}^{*} y_{i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)=1$

ANN approach to non-linearity

In this ANN, elements of \boldsymbol{u} can be thought as the transformed input $\boldsymbol{u}=\varphi(\boldsymbol{x})$

This transformation is explicitly constructed by varying the ANN topology

Moreover, the weights are learned from data

SVM approach to non-linearity

- Choosing a kernel implies some transformation $\varphi(\boldsymbol{x})$. Unlike ANN case, we don't have control over relative weights of components of $\varphi(\boldsymbol{x})$
- However, the advantage of using kernels is that we don't need to actually compute components of $\varphi(\boldsymbol{x})$. This is beneficial when the transformed space is multidimensional. In addition, it makes it possible to transform the data into an infinitedimensional space
- Kernels also offer an additional advantage discussed in the last part of this lecture

Checkpoint

- Which of the following statements is always true? Any method that uses a feature space transformation $\varphi(\boldsymbol{x})$ uses kernels
Support vectors are points from the training set Feature mapping $\varphi(\boldsymbol{x})$ makes data linearly separable

Modular Learning

Separating the "learning module" from feature space transformation

Representer theorem

- Theorem: a large class of linear methods can be formulated (represented) such that both training and making predictions require data only in a form of a dot product
- Hard margin SVM is one example of such a method
- The theorem predicts that there are many more. For example:
* Ridge regression
* Logistic regression
* Perceptron
* Principal component analysis
* and so on ...

Kernelised perceptron (1/3)

When classified correctly, weights are unchanged

When misclassified: $\boldsymbol{w}^{(k+1)}=-\eta(\pm \boldsymbol{x})$
($\eta>0$ is called learning rate)

$$
\begin{array}{ll}
\text { If } y=1 \text {, but } s<0 & \frac{\text { If } y=-1 \text {, but } s \geq 0}{} \\
\hline w_{i} \leftarrow w_{i}+\eta x_{i} & w_{i} \leftarrow w_{i}-\eta x_{i} \\
w_{0} \leftarrow w_{0}+\eta & w_{0} \leftarrow w_{0}-\eta
\end{array}
$$

Suppose weights are initially set to 0

First update: $\boldsymbol{w}=\eta y_{i_{1}} \boldsymbol{x}_{i_{1}}$
Second update: $\boldsymbol{w}=\eta y_{i_{1}} \boldsymbol{x}_{i_{1}}+\eta y_{i_{2}} \boldsymbol{x}_{i_{2}}$
Third update $\boldsymbol{w}=\eta y_{i_{1}} \boldsymbol{x}_{i_{1}}+\eta y_{i_{2}} \boldsymbol{x}_{i_{2}}+\eta y_{i_{3}} \boldsymbol{x}_{i_{3}}$ etc.

Kernelised perceptron (2/3)

- Weights always take the form $\boldsymbol{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \boldsymbol{x}_{i}$, where $\boldsymbol{\alpha}$ some coefficients
- Perceptron weights are always a linear combination of data!
- Recall that prediction for a new point \boldsymbol{x} is based on sign of $w_{0}+\boldsymbol{w}^{\prime} \boldsymbol{x}$
- Substituting \boldsymbol{w} we get $w_{0}+\sum_{i=1}^{n} \alpha_{i} y_{i} \boldsymbol{x}_{i}^{\prime} \boldsymbol{x}$
- The dot product $\boldsymbol{x}_{i}^{\prime} \boldsymbol{x}$ can be replaced with a kernel

Kernelised perceptron (3/3)

Choose initial guess $\boldsymbol{w}^{(0)}, k=0$
Set $\boldsymbol{\alpha}=\mathbf{0}$
For t from 1 to T (epochs)
For each training example $\left\{\boldsymbol{x}_{i}, y_{i}\right\}$
Predict based on $w_{0}+\sum_{j=1}^{n} \alpha_{j} y_{j} \boldsymbol{x}_{i}^{\prime} \boldsymbol{x}_{j}$
If misclassified, update $\alpha_{i} \leftarrow \alpha_{i}+1$

Modular learning

- All information about feature mapping is concentrated within the kernel
- In order to use a different feature mapping, simply change the kernel function
- Algorithm design decouples into choosing a "learning method" (e.g., SVM vs logistic regression) and choosing feature space mapping, i.e., kernel

Constructing Kernels

An overview of popular kernels and kernel properties

A large variety of kernels

Definition 9.1 Polynomial kernel 286
Computation 9.6 All-subsets kernel 289
Computation 9.8 Gaussian kernel 290
Computation 9.12 ANOVA kernel 293
Computation 9.18 Alternative recursion for ANOVA
kernel 296
Computation 9.24 General graph kernels 301
Definition 9.33 Exponential difiusion kernel 307
Definition 9.34 von Neumann difiusion kernel 307
Computation 9.35 Evaluating difiusion kernels 308
Computation 9.46 Evaluating randomised kernels 315
Definition 9.37 Intersection kernel 309
Definition 9.38 Union-complement kernel 310
Remark 9.40 Agreement kernel 310
Section 9.6 Kernels on real numbers 311
Remark 9.42 Spline kernels 313
Definition 9.43 Derived subsets kernel 313
Definition 10.5 Vector space kernel 325
Computation 10.8 Latent semantic kernels 332
Definition 11.7 The p-spectrum kernel 342
Computation 11.10 The p-spectrum recursion 343
Remark 11.13 Blended spectrum kernel 344
Computation 11.17 All-subsequences kernel 347
Computation 11.24 Fixed length subsequences kernel 352

Computation 11.33 Naive recursion for gap-weighted subsequences kernel 358
Computation 11.36 Gap-weighted subsequences kernel 360
Computation 11.45 Trie-based string kernels 367
Algorithm 9.14 ANOVA kernel 294
Algorithm 9.25 Simple graph kernels 302
Algorithm 11.20 All-non-contiguous subsequences kernel 350
Algorithm 11.25 Fixed length subsequences kernel 352
Algorithm 11.38 Gap-weighted subsequences kernel 361
Algorithm 11.40 Character weighting string kernel 364
Algorithm 11.41 Soft matching string kernel 365
Algorithm 11.42 Gap number weighting string kernel 366
Algorithm 11.46 Trie-based p-spectrum kernel 368
Algorithm 11.51 Trie-based mismatch kernel 371
Algorithm 11.54 Trie-based restricted gap-weighted kernel 374
Algorithm 11.62 Co-rooted subtree kernel 380
Algorithm 11.65 All-subtree kernel 383
Algorithm 12.8 Fixed length HMM kernel 401
Algorithm 12.14 Pair HMM kernel 407
Algorithm 12.17 Hidden tree model kernel 411
Algorithm 12.34 Fixed length Markov model Fisher kernel 427

> In this section, we review polynomial and
> Gaussian kernels

Polynomial kernel

- Function $K(\boldsymbol{u}, \boldsymbol{v})=\left(\boldsymbol{u}^{\prime} \boldsymbol{v}+c\right)^{d}$ is called polynomial kernel
* Here \boldsymbol{u} and \boldsymbol{v} are vectors with m components
* $d \geq 0$ is an integer and $c \geq 0$ is a constant
- Without the loss of generality, assume $c=0$
* If it's not, add \sqrt{c} as a dummy feature to \boldsymbol{u} and \boldsymbol{v}
- $\left(\boldsymbol{u}^{\prime} \boldsymbol{v}\right)^{d}=\left(u_{1} v_{1}+\cdots+u_{m} v_{m}\right)\left(u_{1} v_{1}+\cdots+u_{m} v_{m}\right) \ldots\left(u_{1} v_{1}+\cdots+u_{m} v_{m}\right)$
- $=\sum_{i=1}^{l}\left(u_{1} v_{1}\right)^{a_{i 1}} \ldots\left(u_{m} v_{m}\right)^{a_{i m}}$
* Here $0 \leq a_{i j} \leq d$ and l are integers
- $=\sum_{i=1}^{l}\left(u_{1}^{a_{i 1}} \ldots u_{m}^{a_{i m}}\right)\left(v_{1}^{a_{i 1}} \ldots v_{m}^{a_{i m}}\right)$
- $=\sum_{i=1}^{l} \varphi(\boldsymbol{u})_{i} \varphi(\boldsymbol{v})_{i}$
- Feature map $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$, where $\varphi_{i}(\boldsymbol{x})=\left(x_{1}^{a_{i 1}} \ldots x_{m}^{a_{i m}}\right)$

Identifying new kernels

- Method 1: Using identities, such as below. Let $K_{1}(\boldsymbol{u}, \boldsymbol{v}), K_{2}(\boldsymbol{u}, \boldsymbol{v})$ be kernels, $c>0$ be a constant, and $f(\boldsymbol{x})$ be a real-valued function. Then each of the following is also a kernel:

$$
\begin{aligned}
& * K(\boldsymbol{u}, \boldsymbol{v})=K_{1}(\boldsymbol{u}, \boldsymbol{v})+K_{2}(\boldsymbol{u}, \boldsymbol{v}) \\
& * K(\boldsymbol{u}, \boldsymbol{v})=c K_{1}(\boldsymbol{u}, \boldsymbol{v}) \\
& * K(\boldsymbol{u}, \boldsymbol{v})=f(\boldsymbol{u}) K_{1}(\boldsymbol{u}, \boldsymbol{v}) f(\boldsymbol{v}) \\
& * \text { See Bishop's book for more identities }
\end{aligned}
$$

- Method 2: Using Mercer's theorem

Prove these!

Radial basis function kernel

- Function $K(\boldsymbol{u}, \boldsymbol{v})=\exp \left(-\gamma\|\boldsymbol{u}-\boldsymbol{v}\|^{2}\right)$ is called radial basis function kernel (aka Gaussian kernel)
* Here $\gamma>0$ is the spread parameter
- $\exp \left(-\gamma\|\boldsymbol{u}-\boldsymbol{v}\|^{2}\right)=\exp \left(-\gamma(\boldsymbol{u}-\boldsymbol{v})^{\prime}(\boldsymbol{u}-\boldsymbol{v})\right)$
- $=\exp \left(-\gamma\left(\boldsymbol{u}^{\prime} \boldsymbol{u}-2 \boldsymbol{u}^{\prime} \boldsymbol{v}+\boldsymbol{v}^{\prime} \boldsymbol{v}\right)\right)$
- $=\exp \left(-\gamma \boldsymbol{u}^{\prime} \boldsymbol{u}\right) \exp \left(2 \gamma \boldsymbol{u}^{\prime} \boldsymbol{v}\right) \exp \left(-\gamma \boldsymbol{v}^{\prime} \boldsymbol{v}\right)$
- $=f(\boldsymbol{u}) \exp \left(2 \gamma \boldsymbol{u}^{\prime} \boldsymbol{v}\right) f(\boldsymbol{v})$
- $=f(\boldsymbol{u})\left(\sum_{d=0}^{\infty} r_{d}\left(\boldsymbol{u}^{\prime} \boldsymbol{v}\right)^{d}\right) f(\boldsymbol{v})$

Power series

expansion

- Here, each $\left(\boldsymbol{u}^{\prime} \boldsymbol{v}\right)^{d}$ is a polynomial kernel. Using kernel identities, we conclude that the middle term is a kernel, and hence the whole expression is a kernel

Mercer's Theorem

- Question: given $\varphi(\boldsymbol{u})$, is there a good kernel to use?
- Inverse question: given some function $K(\boldsymbol{u}, \boldsymbol{v})$, is this a valid kernel? In other words, is there a mapping $\varphi(\boldsymbol{u})$ implied by the kernel?
- Mercer's theorem:
* Consider a finite sequences of objects $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$
* Construct $n \times n$ matrix of pairwise values $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{\boldsymbol{j}}\right)$
* $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$ is a kernel if this matrix is positivesemidefinite, and this holds for all possible sequences $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$

Kernel as a Similarity Measure

Extending machine learning beyond conventional data structure

Yet another use of kernels

- Remember how (re-parameterised) SVM makes predictions. The prediction depends on the sign of ($b+\sum_{i=1}^{n} \lambda_{i} y_{i} \boldsymbol{x}_{i}^{\prime} \boldsymbol{x}$)
* So point \boldsymbol{x} is "dot-producted" with each training support vector
- This term can be re-written using a kernel $\left(b+\sum_{i=1}^{n} \lambda_{i} y_{i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)\right)$
* This can be seen as comparing x to each of the support vectors
- E.g., consider Gaussian kernel $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)=\exp \left(-\gamma\left\|\boldsymbol{x}_{i}-\boldsymbol{x}\right\|^{2}\right)$
- Here $\left\|\boldsymbol{x}_{i}-\boldsymbol{x}\right\|$ is the distance between the points and $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)$ is monotonically decreasing with the distance
- $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)$ can be interpreted as a similarity measure

Kernel as a similarity measure

- More generally, any kernel $K(\boldsymbol{u}, \boldsymbol{v})$ can be viewed as a similarity measure: it maps two objects to a real number
- In other words, choosing/designing a kernel can be viewed as defining how to compare the objects
- This is a very powerful idea, because we can extend kernel methods to objects that are not vectors
- This is the first time in this course, when we are going to encounter a notion of a different data type
- So far, we've been concerned with vectors of fixed dimensionality, e.g., $\boldsymbol{x}=\left[x_{1}, \ldots, x_{m}\right]^{\prime}$

Data comes in a variety of shapes

- But what if we wanted to do machine learning on ...
- Graphs
* Facebook, Twitter, ...
- Sequences of variable lengths
* "science is organized knowledge", "wisdom is organized life"*, ...
* "CATTC", "AAAGAGA"
- Songs, movies, etc.

Handling arbitrary data structures

- Kernels offer a way to deal with the variety of data types
- For example, we could define a function that somehow measures similarity of variable length strings

K("science is organized knowledge", "wisdom is organized life")

- However, not every function on two objects is a valid kernel
- Remember that we need that function $K(\boldsymbol{u}, \boldsymbol{v})$ to imply a dot product in some feature space

This lecture

- The kernel trick
* Efficient computation of a dot product in transformed feature space
- Modular learning
* Separating the "learning module" from feature space transformation
- Constructing kernels
* An overview of popular kernels and their properties
- Kernel as a similarity measure
* Extending machine learning beyond conventional data structure

