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This lecture
• The kernel trick

∗ Efficient computation of a dot product in transformed feature 
space

• Modular learning
∗ Separating the “learning module” from feature space 

transformation

• Constructing kernels
∗ An overview of popular kernels and their properties

• Kernel as a similarity measure
∗ Extending machine learning beyond conventional data structure

2
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The Kernel Trick

An approach that we introduce in 
the context of SVMs. However, this 
approach is compatible with a large 

number of methods

3
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Handling non-linear data with SVM

4

• Method 1: Soft margin SVM

• Method 2: Feature space transformation
∗ Map data into a new feature space
∗ Run hard margin or soft margin SVM in new space
∗ Decision boundary is non-linear in original space

φ
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Example of feature transformation

• Consider a binary classification 
problem

• Each example has features [𝑥𝑥1, 𝑥𝑥2]

• Not linearly separable

5

Huh?

• Now ‘add’ a feature 𝑥𝑥3 = 𝑥𝑥2 + 𝑥𝑥22

• Each point is now [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥12 + 𝑥𝑥22]

• Linearly separable!
Aww ^.^
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Naïve workflow
• Choose/design a linear model

• Choose/design a high-dimensional transformation 𝜑𝜑 𝒙𝒙
∗ Hoping that after adding a lot of various features some of them will 

make the data linearly separable

• For each training example, and for each new instance 
compute 𝜑𝜑 𝒙𝒙

• Train classifier/Do predictions

6

• Problem: impractical/impossible to compute 𝜑𝜑(𝒙𝒙) for 
high/infinite-dimensional 𝜑𝜑(𝒙𝒙)
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Hard margin SVM
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• Training: finding 𝝀𝝀 that solve
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𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝒙𝒙𝑖𝑖′𝒙𝒙𝑗𝑗

s.t. 𝜆𝜆𝑖𝑖 ≥ 0 and ∑𝑖𝑖=1𝑛𝑛 𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 = 0

• Making predictions: classify new instance 𝒙𝒙 based on the 
sign of

𝑠𝑠 = 𝑏𝑏∗ + �
𝑖𝑖=1

𝑛𝑛

𝜆𝜆𝑖𝑖∗𝑦𝑦𝑖𝑖𝒙𝒙𝑖𝑖′𝒙𝒙

• Here 𝑏𝑏∗ can be found by noting that for arbitrary training example 𝑗𝑗
we must have 𝑦𝑦𝑗𝑗 𝑏𝑏∗ + ∑𝑖𝑖=1𝑛𝑛 𝜆𝜆𝑖𝑖∗𝑦𝑦𝑖𝑖𝒙𝒙𝑖𝑖′𝒙𝒙𝑗𝑗 = 1

dot-product

dot-product
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Hard margin SVM
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• Making predictions: classify new instance 𝒙𝒙 based on the 
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Observation: Dot product representation

• Both parameter estimation and computing predictions 
depend on data only in a form of a dot product
∗ In original space 𝒖𝒖′𝒗𝒗 = ∑𝑖𝑖=1𝑚𝑚 𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖
∗ In transformed space 𝜑𝜑 𝒖𝒖 ′𝜑𝜑 𝒗𝒗 = ∑𝑖𝑖=1𝑙𝑙 𝜑𝜑 𝒖𝒖 𝑖𝑖𝜑𝜑 𝒗𝒗 𝑖𝑖

9

• Kernel is a function that can be expressed as a dot 
product in some feature space 𝐾𝐾 𝒖𝒖,𝒗𝒗 = 𝜑𝜑 𝒖𝒖 ′𝜑𝜑 𝒗𝒗
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Example of a kernel
• For some feature maps there exists a shortcut computation 

of the dot product via kernels

• For example, consider two vectors original space 𝒖𝒖 = 𝑢𝑢1
and 𝒗𝒗 = 𝑣𝑣1 and a transformation 𝜑𝜑 𝒙𝒙 = [𝑥𝑥12, 2𝑐𝑐𝑥𝑥1, 𝑐𝑐]

10

• So 𝜑𝜑 𝒖𝒖 = 𝑢𝑢12, 2𝑐𝑐𝑢𝑢1, 𝑐𝑐
′

and 𝜑𝜑 𝒗𝒗 = 𝑣𝑣12, 2𝑐𝑐𝑣𝑣1, 𝑐𝑐
′

• Then 𝜑𝜑 𝒖𝒖 ′𝜑𝜑 𝒗𝒗 = 𝑢𝑢12𝑣𝑣12 + 2𝑐𝑐𝑢𝑢1𝑣𝑣1 + 𝑐𝑐2

• This can be alternatively computed as
𝜑𝜑 𝒖𝒖 ′𝜑𝜑 𝒗𝒗 = 𝑢𝑢1𝑣𝑣1 + 𝑐𝑐 2

• Here 𝐾𝐾 𝒖𝒖,𝒗𝒗 = 𝑢𝑢1𝑣𝑣1 + 𝑐𝑐 2 is a kernel
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The kernel trick
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• Consider two training points 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑗𝑗 and their dot product in the 
transformed space. Define this quantity as 𝑘𝑘𝑖𝑖𝑗𝑗 ≡ 𝜑𝜑 𝒙𝒙𝑖𝑖 ′𝜑𝜑 𝒙𝒙𝑗𝑗

• This can be computed as:
1. Compute 𝜑𝜑 𝒙𝒙𝑖𝑖 ′

2. Compute 𝜑𝜑 𝒙𝒙𝑗𝑗
3. Compute 𝑘𝑘𝑖𝑖𝑗𝑗 = 𝜑𝜑 𝒙𝒙𝑖𝑖 ′𝜑𝜑 𝒙𝒙𝑗𝑗

• However, for some transformations 𝜑𝜑, there exists a function that 
gives exactly the same answer 𝐾𝐾 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 = 𝑘𝑘𝑖𝑖𝑗𝑗
∗ In other words, sometimes there is a different way (“shortcut”) to 

compute the same quantity 𝑘𝑘𝑖𝑖𝑗𝑗

• This different way, does not involve steps 1 – 3. In particular, we do 
not need to compute 𝜑𝜑(𝒙𝒙𝑖𝑖) and 𝜑𝜑(𝒙𝒙𝑗𝑗)
∗ Usually kernels can be computed in 𝑂𝑂 𝑚𝑚 , whereas computing 𝜑𝜑 𝒙𝒙

requires 𝑂𝑂 𝑙𝑙 , where 𝑙𝑙 ≫ 𝑚𝑚 or 𝑙𝑙 = ∞
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Hard margin SVM

12
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Hard margin SVM
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feature mapping is 
implied by kernel

feature mapping is 
implied by kernel
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ANN approach to non-linearity

14

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑚𝑚

𝑢𝑢1
𝑧𝑧1

𝑧𝑧2

𝑧𝑧𝑞𝑞
𝑢𝑢𝑝𝑝…

…

…

In this ANN, elements of 𝒖𝒖
can be thought as the 
transformed input 𝒖𝒖 = 𝜑𝜑 𝒙𝒙

This transformation is 
explicitly constructed by 
varying the ANN topology

Moreover, the weights are 
learned from data
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SVM approach to non-linearity

15

• Choosing a kernel implies some transformation 𝜑𝜑(𝒙𝒙). Unlike 
ANN case, we don’t have control over relative weights of 
components of 𝜑𝜑 𝒙𝒙

• However, the advantage of using kernels is that we don’t need 
to actually compute components of 𝜑𝜑 𝒙𝒙 . This is beneficial 
when the transformed space is multidimensional. In addition, 
it makes it possible to transform the data into an infinite-
dimensional space

• Kernels also offer an additional advantage discussed in the 
last part of this lecture
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Checkpoint
• Which of the following statements is always true?

a) Any method that uses a feature space transformation 
𝜑𝜑(𝒙𝒙) uses kernels

b) Support vectors are points from the training set
c) Feature mapping 𝜑𝜑(𝒙𝒙) makes data linearly separable

16

art: OpenClipartVectors at 
pixabay.com (CC0)
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Modular Learning

Separating the “learning module” 
from feature space transformation

17
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Representer theorem
• Theorem: a large class of linear methods can be 

formulated (represented) such that both training 
and making predictions require data only in a form 
of a dot product

• Hard margin SVM is one example of such a method

• The theorem predicts that there are many more. For 
example:
∗ Ridge regression
∗ Logistic regression
∗ Perceptron
∗ Principal component analysis
∗ and so on …

18

Math will 
work!

Image: ClkerFreeVectorImages@ pixabay.com (CC0)
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Kernelised perceptron (1/3)

19

If 𝑦𝑦 = 1, but 𝑠𝑠 < 0
𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖 + 𝜂𝜂𝑥𝑥𝑖𝑖
𝑤𝑤0 ← 𝑤𝑤0 + 𝜂𝜂

When misclassified: 𝒘𝒘 𝑘𝑘+1 = −𝜂𝜂(±𝒙𝒙)

When classified correctly, weights are unchanged

(𝜂𝜂 > 0 is called learning rate)

If 𝑦𝑦 = −1, but 𝑠𝑠 ≥ 0
𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖 − 𝜂𝜂𝑥𝑥𝑖𝑖
𝑤𝑤0 ← 𝑤𝑤0 − 𝜂𝜂

Suppose weights are initially set to 0

First update: 𝒘𝒘 = 𝜂𝜂𝑦𝑦𝑖𝑖1𝒙𝒙𝑖𝑖1
Second update: 𝒘𝒘 = 𝜂𝜂𝑦𝑦𝑖𝑖1𝒙𝒙𝑖𝑖1 + 𝜂𝜂𝑦𝑦𝑖𝑖2𝒙𝒙𝑖𝑖2
Third update 𝒘𝒘 = 𝜂𝜂𝑦𝑦𝑖𝑖1𝒙𝒙𝑖𝑖1 + 𝜂𝜂𝑦𝑦𝑖𝑖2𝒙𝒙𝑖𝑖2 + 𝜂𝜂𝑦𝑦𝑖𝑖3𝒙𝒙𝑖𝑖3
etc. 
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• Weights always take the form 𝒘𝒘 = ∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝒙𝒙𝑖𝑖, 
where 𝜶𝜶 some coefficients

• Perceptron weights are always a linear combination 
of data!

• Recall that prediction for a new point 𝒙𝒙 is based on 
sign of 𝑤𝑤0 + 𝒘𝒘′𝒙𝒙

• Substituting 𝒘𝒘 we get 𝑤𝑤0 + ∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝒙𝒙𝑖𝑖′𝒙𝒙

• The dot product 𝒙𝒙𝑖𝑖′𝒙𝒙 can be replaced with a kernel

20

Kernelised perceptron (2/3)
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Choose initial guess 𝒘𝒘(0), 𝑘𝑘 = 0

Set 𝜶𝜶 = 𝟎𝟎

For 𝑡𝑡 from 1 to 𝑇𝑇 (epochs)

For each training example 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖
Predict based on 𝑤𝑤0 + ∑𝑗𝑗=1𝑛𝑛 𝛼𝛼𝑗𝑗𝑦𝑦𝑗𝑗𝒙𝒙𝑖𝑖′𝒙𝒙𝑗𝑗

If misclassified, update 𝛼𝛼𝑖𝑖 ← 𝛼𝛼𝑖𝑖 + 1

21

Kernelised perceptron (3/3)
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Modular learning

• All information about feature mapping is 
concentrated within the kernel

• In order to use a different feature mapping, simply 
change the kernel function

• Algorithm design decouples into choosing a “learning 
method” (e.g., SVM vs logistic regression) and 
choosing feature space mapping, i.e., kernel

22
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Constructing Kernels

An overview of popular kernels 
and kernel properties

23



Statistical Machine Learning (S2 2017) Deck 11

A large variety of kernels

24

In this section, we 
review polynomial and 

Gaussian kernels
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Polynomial kernel
• Function 𝐾𝐾 𝒖𝒖,𝒗𝒗 = 𝒖𝒖′𝒗𝒗 + 𝑐𝑐 𝑑𝑑 is called polynomial kernel

∗ Here 𝒖𝒖 and 𝒗𝒗 are vectors with 𝑚𝑚 components
∗ 𝑑𝑑 ≥ 0 is an integer and 𝑐𝑐 ≥ 0 is a constant

• Without the loss of generality, assume 𝑐𝑐 = 0
∗ If it’s not, add 𝑐𝑐 as a dummy feature to 𝒖𝒖 and 𝒗𝒗

• 𝒖𝒖′𝒗𝒗 𝑑𝑑 = 𝑢𝑢1𝑣𝑣1 + ⋯+ 𝑢𝑢𝑚𝑚𝑣𝑣𝑚𝑚 𝑢𝑢1𝑣𝑣1 + ⋯+ 𝑢𝑢𝑚𝑚𝑣𝑣𝑚𝑚 … 𝑢𝑢1𝑣𝑣1 + ⋯+ 𝑢𝑢𝑚𝑚𝑣𝑣𝑚𝑚

• = ∑𝑖𝑖=1𝑙𝑙 𝑢𝑢1𝑣𝑣1 𝑎𝑎𝑖𝑖1 … 𝑢𝑢𝑚𝑚𝑣𝑣𝑚𝑚 𝑎𝑎𝑖𝑖𝑖𝑖

∗ Here 0 ≤ 𝑎𝑎𝑖𝑖𝑗𝑗 ≤ 𝑑𝑑 and 𝑙𝑙 are integers

• = ∑𝑖𝑖=1𝑙𝑙 𝑢𝑢1
𝑎𝑎𝑖𝑖1 …𝑢𝑢𝑚𝑚

𝑎𝑎𝑖𝑖𝑖𝑖 𝑣𝑣1
𝑎𝑎𝑖𝑖1 … 𝑣𝑣𝑚𝑚

𝑎𝑎𝑖𝑖𝑖𝑖

• = ∑𝑖𝑖=1𝑙𝑙 𝜑𝜑 𝒖𝒖 𝑖𝑖𝜑𝜑 𝒗𝒗 𝑖𝑖

• Feature map 𝜑𝜑:ℝ𝑚𝑚 → ℝ𝑙𝑙, where 𝜑𝜑𝑖𝑖 𝒙𝒙 = 𝑥𝑥1
𝑎𝑎𝑖𝑖1 … 𝑥𝑥𝑚𝑚

𝑎𝑎𝑖𝑖𝑖𝑖

25
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Identifying new kernels
• Method 1: Using identities, such as below. Let 
𝐾𝐾1 𝒖𝒖,𝒗𝒗 , 𝐾𝐾2 𝒖𝒖,𝒗𝒗 be kernels, 𝑐𝑐 > 0 be a constant, 
and 𝑓𝑓 𝒙𝒙 be a real-valued function. Then each of the 
following is also a kernel:
∗ 𝐾𝐾 𝒖𝒖,𝒗𝒗 = 𝐾𝐾1 𝒖𝒖,𝒗𝒗 + 𝐾𝐾2 𝒖𝒖,𝒗𝒗
∗ 𝐾𝐾 𝒖𝒖,𝒗𝒗 = 𝑐𝑐𝐾𝐾1 𝒖𝒖,𝒗𝒗
∗ 𝐾𝐾 𝒖𝒖,𝒗𝒗 = 𝑓𝑓 𝒖𝒖 𝐾𝐾1 𝒖𝒖,𝒗𝒗 𝑓𝑓 𝒗𝒗
∗ See Bishop’s book for more identities

• Method 2: Using Mercer’s theorem
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Radial basis function kernel
• Function 𝐾𝐾 𝒖𝒖,𝒗𝒗 = exp −𝛾𝛾 𝒖𝒖 − 𝒗𝒗 2 is called radial basis function 

kernel (aka Gaussian kernel)
∗ Here 𝛾𝛾 > 0 is the spread parameter

• exp −𝛾𝛾 𝒖𝒖 − 𝒗𝒗 2 = exp −𝛾𝛾 𝒖𝒖 − 𝒗𝒗 ′ 𝒖𝒖 − 𝒗𝒗

• = exp −𝛾𝛾 𝒖𝒖′𝒖𝒖 − 2𝒖𝒖′𝒗𝒗 + 𝒗𝒗′𝒗𝒗

• = exp −𝛾𝛾𝒖𝒖′𝒖𝒖 exp 2𝛾𝛾𝒖𝒖′𝒗𝒗 exp −𝛾𝛾𝒗𝒗′𝒗𝒗

• = 𝑓𝑓 𝒖𝒖 exp 2𝛾𝛾𝒖𝒖′𝒗𝒗 𝑓𝑓 𝒗𝒗

• = 𝑓𝑓 𝒖𝒖 ∑𝑑𝑑=0∞ 𝑟𝑟𝑑𝑑 𝒖𝒖′𝒗𝒗 𝑑𝑑 𝑓𝑓 𝒗𝒗

• Here, each 𝒖𝒖′𝒗𝒗 𝑑𝑑 is a polynomial kernel. Using kernel identities, we 
conclude that the middle term is a kernel, and hence the whole expression 
is a kernel

27
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Mercer’s Theorem
• Question: given φ 𝒖𝒖 , is there a good kernel to use?

• Inverse question: given some function 𝐾𝐾(𝒖𝒖,𝒗𝒗), is this a 
valid kernel? In other words, is there a mapping φ 𝒖𝒖
implied by the kernel?

• Mercer’s theorem:
∗ Consider a finite sequences of objects 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛
∗ Construct 𝑛𝑛 × 𝑛𝑛 matrix of pairwise values 𝐾𝐾(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗)
∗ 𝐾𝐾(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) is a kernel if this matrix is positive-

semidefinite, and this holds for all possible 
sequences 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛

28
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Kernel as a Similarity 
Measure

Extending machine learning beyond 
conventional data structure

29
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Yet another use of kernels

30

• Remember how (re-parameterised) SVM makes predictions. The 
prediction depends on the sign of 𝑏𝑏 + ∑𝑖𝑖=1𝑛𝑛 𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝒙𝒙𝑖𝑖′𝒙𝒙
∗ So point 𝒙𝒙 is “dot-producted” with each training support vector

• This term can be re-written using a kernel 𝑏𝑏 + ∑𝑖𝑖=1𝑛𝑛 𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾 𝒙𝒙𝑖𝑖 ,𝒙𝒙
∗ This can be seen as comparing 𝒙𝒙 to each of the support vectors

• E.g., consider Gaussian kernel 𝐾𝐾 𝒙𝒙𝑖𝑖 ,𝒙𝒙 = exp −𝛾𝛾 𝒙𝒙𝑖𝑖 − 𝒙𝒙 2

• Here 𝒙𝒙𝑖𝑖 − 𝒙𝒙 is the distance between the points and 𝐾𝐾 𝒙𝒙𝑖𝑖 ,𝒙𝒙 is 
monotonically decreasing with the distance

• 𝐾𝐾 𝒙𝒙𝑖𝑖 ,𝒙𝒙 can be interpreted as a similarity measure
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Kernel as a similarity measure

31

• More generally, any kernel 𝐾𝐾 𝒖𝒖,𝒗𝒗 can be viewed as a similarity 
measure: it maps two objects to a real number

• In other words, choosing/designing a kernel can be viewed as 
defining how to compare the objects

• This is a very powerful idea, because we can extend kernel methods 
to objects that are not vectors

• This is the first time in this course, when we are going to encounter 
a notion of a different data type

• So far, we’ve been concerned with vectors of fixed dimensionality, 
e.g., 𝒙𝒙 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ′
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Data comes in a variety of shapes

32

• But what if we wanted to do machine learning on …

• Graphs
∗ Facebook, Twitter, …

• Sequences of variable lengths
∗ “science is organized knowledge”, “wisdom is organized 

life”*, …
∗ “CATTC”, “AAAGAGA”

• Songs, movies, etc.

* Both quotations are from Immanuel Kant
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Handling arbitrary data structures

33

• Kernels offer a way to deal with the variety of data types

• For example, we could define a function that somehow 
measures similarity of variable length strings

K(“science is organized knowledge”, “wisdom is organized life”)

• However, not every function on two objects is a valid kernel

• Remember that we need that function 𝐾𝐾 𝒖𝒖,𝒗𝒗 to imply a dot 
product in some feature space
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This lecture
• The kernel trick

∗ Efficient computation of a dot product in transformed feature 
space

• Modular learning
∗ Separating the “learning module” from feature space 

transformation

• Constructing kernels
∗ An overview of popular kernels and their properties

• Kernel as a similarity measure
∗ Extending machine learning beyond conventional data structure
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