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This lecture

• Deep learning
∗ Representation capacity
∗ Deep models and representation learning

• Convolutional Neural Networks
∗ Convolution operator
∗ Elements of a convolution-based network

• Autoencoders
∗ Learning efficient coding
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Deep Learning and 
Representation Learning

Hidden layers viewed as 
feature space transformation

3



Statistical Machine Learning (S2 2017) Deck 8

Representational capacity
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• ANNs with a single hidden layer are universal approximators

• For example, such ANNs can represent any Boolean function

• Any Boolean function over 𝑚𝑚 variables can be implemented 
using a hidden layer with up to 2𝑚𝑚 elements

• More efficient to stack several hidden layers

𝑂𝑂𝑂𝑂(𝑥𝑥1, 𝑥𝑥2)

𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥1, 𝑥𝑥2)

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥1)

𝑢𝑢 = 𝑔𝑔(𝑥𝑥1 + 𝑥𝑥2 – 0.5)

𝑢𝑢 = 𝑔𝑔(𝑥𝑥1 + 𝑥𝑥2 – 1.5)

𝑢𝑢 = 𝑔𝑔(−𝑥𝑥1)

𝑔𝑔 𝑟𝑟 = 1 if 𝑟𝑟 ≥ 0 and 𝑔𝑔 𝑟𝑟 = 0 otherwise
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Deep networks
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𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑝𝑝

𝑠𝑠1
𝑡𝑡1

𝑡𝑡2

𝑡𝑡𝑝𝑝𝑝
𝑠𝑠𝑝𝑝𝑝…

…

…

input 
layer

hidden 
layer 1 hidden 

layer 2

𝑑𝑑𝑙𝑙𝑙𝑙𝑐𝑐𝑘𝑘𝑘𝑘

𝑢𝑢1
𝑧𝑧1

𝑧𝑧2

𝑧𝑧𝑞𝑞
𝑢𝑢𝑝𝑝𝑝

…

…

output 
layer

𝑏𝑏𝑗𝑗𝑗𝑗
𝑎𝑎𝑖𝑖𝑖𝑖

hidden 
layer 3

“Depth” refers 
to number of 
hidden layers

𝒔𝒔 = tanh 𝑨𝑨′𝒙𝒙 𝒕𝒕 = tanh 𝑩𝑩′𝒔𝒔 𝒖𝒖 = tanh 𝑪𝑪′𝒕𝒕 𝒛𝒛 = tanh 𝑫𝑫′𝒖𝒖
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Deep ANNs as representation learning
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• Consecutive layers form representations of the input of 
increasing complexity

• An ANN can have a simple linear output layer, but using 
complex non-linear representation

𝒛𝒛 = tanh 𝑫𝑫′ tanh 𝑪𝑪′ tanh 𝑩𝑩′ tanh 𝑨𝑨′𝒙𝒙

• Equivalently, a hidden layer can be thought of as the 
transformed feature space, e.g., 𝒖𝒖 = 𝜑𝜑 𝒙𝒙

• Parameters of such a transformation are learned from data

Bias terms are omitted for simplicity
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ANN layers as data transformation
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𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑝𝑝

𝑠𝑠1
𝑡𝑡1

𝑡𝑡2

𝑡𝑡𝑝𝑝𝑝
𝑠𝑠𝑝𝑝𝑝…

…

…

input data

𝑢𝑢1
𝑧𝑧1

𝑧𝑧2

𝑧𝑧𝑞𝑞
𝑢𝑢𝑝𝑝𝑝

…

…

the model
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ANN layers as data transformation
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pre-processed data the model

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑝𝑝

𝑠𝑠1
𝑡𝑡1

𝑡𝑡2

𝑡𝑡𝑝𝑝𝑝
𝑠𝑠𝑝𝑝𝑝…

…

…

𝑢𝑢1
𝑧𝑧1

𝑧𝑧2

𝑧𝑧𝑞𝑞
𝑢𝑢𝑝𝑝𝑝

…

…
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ANN layers as data transformation
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pre-processed data the model
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ANN layers as data transformation
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pre-processed data the model
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Depth vs width
• A single infinitely wide layer used in theory gives a 

universal approximator

• However depth tends to give more accurate models
∗ Biological inspiration from the eye:
∗ first detect small edges and color patches;
∗ compose these into smaller shapes;
∗ building to more complex detectors, such as textures, faces etc.

• Seek to mimic layered complexity in a network

• However vanishing gradient problem affects learning 
with very deep models

11
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Animals in the zoo
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Artificial Neural 
Networks (ANNs)

Feed-forward 
networksMultilayer perceptrons

Perceptrons Convolutional 
neural networks

Recurrent neural 
networks

art: OpenClipartVectors
at pixabay.com (CC0)

• Recurrent neural networks are not covered in this subject
• If time permits, we will cover autoencoders. An autoencoder is an ANN 

trained in a specific way.
∗ E.g., a multilayer perceptron can be trained as an autoencoder, or a recurrent 

neural network can be trained as an autoencoder.
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Convolutional
Neural Networks (CNN)

Based on repeated application of small filters to 
patches of a 2D image or range of a 1D input

13



Statistical Machine Learning (S2 2017) Deck 8

sliding window

Convolution
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𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 𝑎𝑎4 … … … …

Σ

× 𝑤𝑤1 × 𝑤𝑤2 × 𝑤𝑤3

𝑏𝑏2 … … … … … …

𝒂𝒂 is input vector

𝒃𝒃 is output vector
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Convolution

15

Σ

× 𝑤𝑤1 × 𝑤𝑤2 × 𝑤𝑤3

𝑏𝑏𝑖𝑖 = �
𝛿𝛿=−𝐶𝐶

𝐶𝐶

𝑎𝑎(𝑖𝑖+𝛿𝛿)𝑤𝑤(𝛿𝛿+𝐶𝐶+1)

𝒃𝒃 = 𝒂𝒂 ∗ 𝒘𝒘

𝒘𝒘 = 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 𝑇𝑇

is called kernel*
or filter

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 𝑎𝑎4 … … … …

𝑏𝑏2 𝑏𝑏3 𝑏𝑏4 𝑏𝑏5 … … …

𝒂𝒂 is input vector

𝒃𝒃 is output vector

*Later in the subject, we will also use an unrelated definition of kernel as a function representing a dot product

𝑖𝑖 ≥ 2
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Convolution on 2D images
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W Σ……

one 
output 
pixel

input output

𝐵𝐵𝑖𝑖𝑖𝑖 = �
𝛿𝛿𝑖𝑖 =−𝐶𝐶

𝐶𝐶

�
𝛿𝛿𝑗𝑗=−𝐷𝐷

𝐷𝐷

𝐴𝐴𝑖𝑖+𝛿𝛿𝑖𝑖,𝑗𝑗+𝛿𝛿𝑗𝑗𝑊𝑊𝛿𝛿𝑖𝑖+𝐶𝐶+1,𝛿𝛿𝑗𝑗+𝐷𝐷+1

𝑩𝑩 = 𝑨𝑨 ∗𝑾𝑾
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Filters as feature detectors
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𝑨𝑨 is input image

-1 0 1

-1 0 1

-1 0 1

convolve with a 
vertical edge filter

filtered 
image

activation 
function
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Filters as feature detectors
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𝑨𝑨 is input image

convolve with a 
vertical edge filter

filtered 
image

activation 
function

1 1 1

0 0 0

-1 -1 -1
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Stacking convolutions
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-1 0 1

-1 0 1

-1 0 1

filters

downsampling and 
further convolutions

…

…

• Develop complex representations at 
different scales and complexity

• Filters are learned from training data!

1 1 1

0 0 0

-1 -1 -1



Statistical Machine Learning (S2 2017) Deck 8

CNN for computer vision
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48 × 48 × 5

24 × 24 × 10

patches of 48 × 48

24
×

24
×

5

downsampling

2D convolution

3D convolution

12 × 12 × 10

downsampling

1 × 1440
flattening

fully 
connected

1 × 720

…

linear 
regression

…

Implemented by Jizhizi Li
based on LeNet5: http://deeplearning.net/tutorial/lenet.html
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Components of a CNN
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• Convolutional layers
∗ Complex input representations based on convolution 

operation
∗ Filter weights are learned from training data

• Downsampling, usually via Max Pooling
∗ Re-scaling to smaller resolution, limits parameter 

explosion

• Fully connected parts and output layer
∗ Merges representations together
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Downsampling via max pooling
• Special type of processing layer. For an 𝑚𝑚 × 𝑚𝑚 patch

𝑣𝑣 = max 𝑢𝑢11,𝑢𝑢12, … ,𝑢𝑢𝑚𝑚𝑚𝑚
• Strictly speaking, not everywhere differentiable. Instead, 

“gradient” is defined heuristically
∗ Tiny changes in values of 𝑢𝑢𝑖𝑖𝑖𝑖 that is not the maximum do not 

change 𝑣𝑣
∗ If 𝑢𝑢𝑖𝑖𝑖𝑖 is the maximum value, tiny changes in that value change 𝑣𝑣

linearly

• As such use 𝜕𝜕𝑣𝑣
𝜕𝜕𝑢𝑢𝑖𝑖𝑖𝑖

= 1 if 𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑣𝑣, and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖𝑖𝑖

= 0 otherwise

• Forward pass records maximising element, which is then 
used in the backward pass during back-propagation

22
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Convolution as a regulariser
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…

…

Restriction: same 
color – same 

weight

Fully connected, 
unrestricted

Fully connected, 
unrestricted
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Document classification
(Kalchbrenner et al, 2014)
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Structure of text important for 
classifying documents

Capture patterns of nearby 
words using 1d convolutions
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Autoencoder
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An ANN training setup that can be 
used for unsupervised learning or 

efficient coding
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Autoencoding idea
• Supervised learning:

∗ Univariate regression: predict 𝑦𝑦 from 𝒙𝒙
∗ Multivariate regression: predict 𝒚𝒚 from 𝒙𝒙

• Unsupervised learning: explore data 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛
∗ No response variable

• For each 𝒙𝒙𝑖𝑖 set 𝒚𝒚𝑖𝑖 ≡ 𝒙𝒙𝑖𝑖
• Train an ANN to predict 𝒚𝒚𝑖𝑖 from 𝒙𝒙𝑖𝑖
• Pointless?

26
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• Given data without labels 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛, set 𝒚𝒚𝑖𝑖 ≡ 𝒙𝒙𝑖𝑖 and train 
an ANN to predict 𝒛𝒛 𝒙𝒙𝑖𝑖 ≈ 𝒙𝒙𝑖𝑖

• Set the hidden layer 𝒖𝒖 in the middle “thinner” than the 
input

27

adapted from: Chervinskii at 
Wikimedia Commons (CC4)

𝒛𝒛𝒙𝒙 𝒖𝒖

Autoencoder topology
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• Suppose you managed to train a network that gives a good 
restoration of the original signal 𝒛𝒛 𝒙𝒙𝑖𝑖 ≈ 𝒙𝒙𝑖𝑖

• This means that the data structure can be effectively 
described (encoded) by a lower dimensional representation 𝒖𝒖

28

adapted from: Chervinskii at 
Wikimedia Commons (CC4)

𝒙𝒙

Introducing the bottleneck

𝒖𝒖 𝒛𝒛
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• Autoencoders can be used for compression and 
dimensionality reduction via a non-linear 
transformation

• If you use linear activation functions and only one 
hidden layer, then the setup becomes almost that of 
Principal Component Analysis (coming up in a few 
weeks)
∗ The difference is that ANN might find a different solution, 

it doesn’t use eigenvalues

29

Dimensionality reduction
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Tools
• Tensorflow, Theano, Torch

∗ python / lua toolkits for deep learning
∗ symbolic or automatic differentiation
∗ GPU support for fast compilation
∗ Theano tutorials at http://deeplearning.net/tutorial/

• Various others
∗ Caffe
∗ CNTK
∗ deeplearning4j …

• Keras: high-level Python API. Can run on top of 
TensorFlow, CNTK, or Theano

30

http://deeplearning.net/tutorial/
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This lecture

• Deep learning
∗ Representation capacity
∗ Deep models and representation learning

• Convolutional Neural Networks
∗ Convolution operator
∗ Elements of a convolution-based network

• Autoencoders
∗ Learning efficient coding
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