Lecture 8. Deep Learning. Convolutional ANNs. Autoencoders

COMP90051 Statistical Machine Learning

Semester 2, 2017 Lecturer: Andrey Kan

Copyright: University of Melbourne

This lecture

- Deep learning
 - Representation capacity
 - * Deep models and representation learning
- Convolutional Neural Networks
 - * Convolution operator
 - * Elements of a convolution-based network
- Autoencoders
 - Learning efficient coding

Deep Learning and Representation Learning

Hidden layers viewed as feature space transformation

Representational capacity

- ANNs with a single hidden layer are universal approximators
- For example, such ANNs can represent any Boolean function

$OR(x_1, x_2)$	$u = g(x_1 + x_2 - 0.5)$
$AND(x_1, x_2)$	$u = g(x_1 + x_2 - 1.5)$
$NOT(x_1)$	$u = g(-x_1)$

g(r) = 1 if $r \ge 0$ and g(r) = 0 otherwise

- Any Boolean function over *m* variables can be implemented using a hidden layer with up to 2^m elements
- More *efficient* to stack several hidden layers

"Depth" refers to number of hidden layers

s = tanh(A'x) t = tanh(B's) u = tanh(C't) z = tanh(D'u)

Deep ANNs as representation learning

- Consecutive layers form <u>representations</u> of the input of increasing complexity
- An ANN can have a simple *linear* output layer, but using complex *non-linear* representation $z = \tanh\left(D'\left(\tanh\left(C'\left(\tanh\left(B'(\tanh(A'x))\right)\right)\right)\right)\right)$
- Equivalently, a hidden layer can be thought of as the transformed feature space, e.g., $u = \varphi(x)$
- Parameters of such a transformation are learned from data

input data

the model

pre-processed data

the model

pre-processed data

pre-processed data the model

Depth vs width

- A single infinitely wide layer used in theory gives a universal approximator
- However depth tends to give more accurate models
 - Biological inspiration from the eye:
 - first detect small edges and color patches;
 - compose these into smaller shapes;
 - * building to more complex detectors, such as textures, faces etc.
- Seek to mimic layered complexity in a network
- However vanishing gradient problem affects learning with very deep models

Animals in the zoo

art: OpenClipartVectors at pixabay.com (CC0)

- Recurrent neural networks are not covered in this subject
- If time permits, we will cover <u>autoencoders</u>. An autoencoder is an ANN trained in a specific way.
 - * E.g., a multilayer perceptron can be trained as an autoencoder, or a recurrent neural network can be trained as an autoencoder.

Convolutional Neural Networks (CNN)

Based on repeated application of small filters to patches of a 2D image or range of a 1D input

b is output vector

Convolution

b is output vector

Convolution on 2D images

Filters as feature detectors

A is input image

filtered image

Filters as feature detectors

A is input image

filtered image

Stacking convolutions

- Develop complex representations at different scales and complexity
- Filters are learned from training data!

downsampling and further convolutions

CNN for computer vision

Implemented by Jizhizi Li based on LeNet5: http://deeplearning.net/tutorial/lenet.html

Components of a CNN

- Convolutional layers
 - Complex input representations based on convolution operation
 - * Filter weights are learned from training data
- Downsampling, usually via Max Pooling
 - Re-scaling to smaller resolution, limits parameter explosion
- Fully connected parts and output layer
 - Merges representations together

Downsampling via max pooling

- Special type of processing layer. For an $m \times m$ patch $v = \max(u_{11}, u_{12}, \dots, u_{mm})$
- Strictly speaking, not everywhere differentiable. Instead, "gradient" is defined heuristically
 - * Tiny changes in values of u_{ij} that is not the maximum do not change v
 - * If u_{ij} is the maximum value, tiny changes in that value change v linearly

• As such use
$$\frac{\partial v}{\partial u_{ij}} = 1$$
 if $u_{ij} = v$, and $\frac{\partial v}{\partial u_{ij}} = 0$ otherwise

 Forward pass records maximising element, which is then used in the backward pass during back-propagation

Convolution as a regulariser

Fully connected, unrestricted

Fully connected, unrestricted

<u>Restriction</u>: same color – same weight

Document classification (Kalchbrenner et al, 2014)

Structure of text important for classifying documents

Capture patterns of nearby words using 1d convolutions

Autoencoder

An ANN training setup that can be used for unsupervised learning or efficient coding

Autoencoding idea

- Supervised learning:
 - Univariate regression: predict y from x
 - * Multivariate regression: predict y from x
- Unsupervised learning: explore data x_1, \dots, x_n
 - * No response variable
- For each x_i set $y_i \equiv x_i$
- Train an ANN to predict y_i from x_i
- Pointless?

Autoencoder topology

- Given data without labels $x_1, ..., x_n$, set $y_i \equiv x_i$ and train an ANN to predict $z(x_i) \approx x_i$
- Set the hidden layer u in the middle "thinner" than the input

adapted from: Chervinskii at Wikimedia Commons (CC4)

Introducing the bottleneck

- Suppose you managed to train a network that gives a good restoration of the original signal $z(x_i) \approx x_i$
- This means that the data structure can be effectively described (encoded) by a lower dimensional representation u

adapted from: Chervinskii at Wikimedia Commons (CC4)

Dimensionality reduction

- Autoencoders can be used for compression and dimensionality reduction via a non-linear transformation
- If you use linear activation functions and only one hidden layer, then the setup becomes almost that of Principal Component Analysis (coming up in a few weeks)
 - The difference is that ANN might find a different solution, it doesn't use eigenvalues

Tools

- Tensorflow, Theano, Torch
 - * python / lua toolkits for deep learning
 - symbolic or automatic differentiation
 - GPU support for fast compilation
 - * Theano tutorials at <u>http://deeplearning.net/tutorial/</u>
- Various others
 - Caffe
 - * CNTK
 - deeplearning4j ...
- Keras: high-level Python API. Can run on top of TensorFlow, CNTK, or Theano

This lecture

- Deep learning
 - Representation capacity
 - * Deep models and representation learning
- Convolutional Neural Networks
 - Convolution operator
 - * Elements of a convolution-based network
- Autoencoders
 - Learning efficient coding