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 Multilayer perceptron
* Model structure
* Universal approximation
* Training preliminaries

* Backpropagation
* Step-by-step derivation
* Notes on regularisation
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Anima

s in the zoo

Artificial Neural
Networks (ANNSs)

Recurrent neural
networks

Multilayer perceptrons

Perceptrons

Feed-forward
networks

Convolutional
neural networks

* Recurrent neural networks are not covered in this subject
* If time permits, we will cover autoencoders. An autoencoder is an ANN

trained in a specific way.

* E.g., a multilayer perceptron can be trained as an autoencoder, or a recurrent
neural network can be trained as an autoencoder.
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Multilayer Perceptron

Modelling non-linearity via
function composition
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Limitations of linear models

Some function are linearly separable, but many are not

AND OR XOR

Possible solution: composition
x1 XOR x5, = (x4 OR x,) AND not(x; AND x,)

We are going to combine perceptrons ...
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Simplified graphical representation

Perceptron model

* Xy, Xo —inputs

R * Wy, Ws —synaptic weights

maodel to logistic

regression * Wy — bias weight

Sputnik — first
artificial Earth |
satellite

* [ —activation function

i
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Perceptorn is sort of a building block for ANN

* ANNSs are not restricted to binary classification

e Nodes in ANN can have various activation functions

1, if s=0
Step function f(s) = {0 i; s< 0
1 fs>0
Sign function f(s) = {_'1 lZ;SS_< 0
Logistic function (s) = .
& J(s) = 1+eS

Many others: tanh, rectifier, etc.
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Feed-forward

X; are
inputs, i.e.,
attributes

note: here x; are
components of a
single training
instance x

a training
dataset is a set
of instances

[
»

hidden
layer

output
layer

input

(ANNSs can have
layer

more than one
hidden layer)

Artificial Neural Network

flow of
computation

Z; are outputs, i.e.,
predicted labels

note: ANNs
naturally handle
multidimensional
output

e.g., for handwritten
digits recognition,
each output node
can represent the

probability of a digit
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ANN as a function composition

zx = h(sk)
p
Sk = Wok + z Ujok
j=1

note that z is a
function composition
(a function applied to
the result of another

function, etc.)

you can add bias node xy, = 1 to simplify

here g, h are activation equations: r; = Y12 x; vy
functions. These can be
either same (e.g., both similarly you can add bias node ug = 1 to

sigmoid) or different simplify equations: s, = Z?=0 UjWi
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ANN in supervised learning

* ANNSs can be naturally adapted to various supervised
learning setups, such as univariate and multivariate
regression, as well as binary and multilabel classification

e Univariate regression y = f(x)

* e.g., linear regression earlier in the course

* Multivariate regressiony = f(x)

* predicting values for multiple continuous outcomes

* Binary classification
* e.g., predict whether a patient has type Il diabetes

e Multivariate classification

* e.g., handwritten digits recognition with labels “1”, “2”, etc.

10
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The power of ANN as a non-linear model

—1.5}

—2.0-

ANNSs are capable of approximating various non-linear
functions, e.g., z(x) = x* and z(x) = sinx

For example, consider the
following network. In this
example, hidden unit
activation functions are tanh

2.0

L.5f —_ I:anhl
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The power of ANN as a non-linear model

 ANNs are capable of approximating various non-linear
functions, e.g., z(x) = x% and z(x) = sinx

= / //,,-.t_ Blue points are the

AN function values

\ N .
\ AN / evaluated at
\ N different x. Red lines

are the predictions

\ \/
\ /\ _-"".
2(x) \ /o N . / from the ANN.

\ / N AN / Dashed lines are
“ . _H,./ \\"f - - _ _ outputs of the

X Adapted from Bishop 2007 hidden units

e Universal approximation theorem (Cybenko 1989): An ANN
with a hidden layer with a finite number of units, and mild
assumptions on the activation function, can approximate
continuous functions on compact subsets of R™ arbitrarily well

12
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How to train your dragen-network?

* You know the drill: Define the loss function and find
parameters that minimise the loss on training data

* In the following, we are
going to use stochastic
gradient descent with a
batch size of one. That is,
we will process training
examples one by one

13
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Training setup: univariate regression

* In what follows we consider
univariate regression setup

e Moreover, we will use identity
output activation function

_ e\
Z=h(s) =s = =0 WiW;

e This will simplify description
of backpropagation. In other
settings, the training
procedure is similar

14
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Training setup: univariate regression

e How many parameters
does this ANN have? Bias
nodes x, and uy are
present, but not shown

® mw+@+D

I

., (m+2)p+1

‘r (m+ 1p
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Loss function for ANN training

* Inonline training, we need to define the loss between a
single training example {x, y} and ANN’s prediction
f(x, 0) = z, where 0 is a parameter vector comprised
of all coefficients v;; and w;

* For regression we can use good old squared error
1, . 2 1 5
L=-(f(x0)-y) =5(z-y)
(the constant is used for mathematical convenience, see later)

* Training means finding the minimum of L as a function
of parameter vector 0
* Fortunately L(0) is a differentiable function
* Unfortunately there is no analytic solution in general

16
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Stochastic gradient descent for ANN

Choose initial guess 8%, k = 0

Here 0 is a set of all weights form all layers
For i from 1 to T (epochs)
For j from 1 to N (training examples)
Consider example {xj, yj}

Update: 80D = g — pvL(8W)

Need to compute partial

oL oL

and —
avij aWj

1
L =§(Z'

2
) derivatives

17
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Backpropagation

= “backward propagation of errors”

Calculating the gradient
of a loss function

18
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Backpropagation: start with the chain rule

* Recall that the output z of an ANN is a function
composition, and hence L(z) is also a composition
« L =0.5(z—v)%=0.5((s) —y)? =0.5(s — y)*

* = 0.5( 5?:0 UjWj — y)z = O.S(Z?zog(rj)wj — y)z = .-

* Backpropagation makes use of
this fact by applying the chain
rule for derivatives

oL _ 0LO0z 0s
ow; 9z ds dw;

dL _ 0L Oz ds Ouj 0r;
av,;j - 0z 0s auj aTj avij
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Backpropagation: inte

* Apply the chain rule .
. 9L _[9Ldz|ds

owj |0z ds)ow;
oL _[aLaz as du))ar;

0vij |9z ds du; 0r}|ov;;

lﬁj

Ej_

rmediate step

Now define
B dL B dL 0z

0 =95 " 9205
0L L0z ds du;

ar; - 0z ds 6uj Orj

J

Here L = 0.5(z — y)?

andz =s

Thugé = (z — y)

p

* Heres =) _,uw; and
u; = h(r;)
Thus|g; = w;h'(17)
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 We have ... Where e Recall that
OL _ o 0s _oL _ . _ s =YP_ ww;
*awj_5awj Fo=5=0E-y) JnTLOJJ
Y. = RPN O VI
ovj; J|ovy; J
0 or;
° So—S=ujand L = x;
aWj avi]’
@ e We have
oL
W = Su; = (z — Yy
oL ,
* avi_=€in=6th (T}')Xi
\§ J

21
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Forward propagation

e Use current

estimates of >

v;j and w;

* Calculate 7y,
Uj, S and z

 Backpropagation equations

oL

* a—Wj:5uj=(z—y)uj

oL
avij

*

= iji = 5W]h,(7"])xl

22
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Backward propagation of errors

 Backpropagation equations
oL

* a—Wj:&Lj = (z -y
oL B ,
* oo gjx; = owjh ('rj)xi
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Some further notes on ANN training

 ANN is a flexible model (recall universal approximation
theorem), but the flipside of it is over-parameterisation,
hence tendency to overfitting

e Starting weights are usually small random values
distributed around zero

e Implicit regularisation: o .
early stopping Ly [—tann]

* With some activation
functions, this shrinks
the ANN towards a
linear model (why?)

24
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Explicit regularisation

e Alternatively, an explicit regularisation can be used,
much like in ridge regression

* Instead of minimising the loss L, minimise regularised

functionL+/1( ?LOZ UU +Z] 0 ])

* This will simply add 2Av;; and 2Aw; terms to the partial
derivatives

e With some activation functions this also shrinks the ANN
towards a linear model

25



Statistical Machine Learning (52 2017)

Deck 7

This lecture

 Multilayer perceptron
* Model structure
* Universal approximation
* Training preliminaries

* Backpropagation
* Step-by-step derivation
* Notes on regularisation
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