Lecture 7. Multilayer
 Perceptron. Backpropagation

COMP90051 Statistical Machine Learning

Semester 2, 2017
Lecturer: Andrey Kan

This lecture

- Multilayer perceptron
* Model structure
* Universal approximation
* Training preliminaries
- Backpropagation
* Step-by-step derivation
* Notes on regularisation

Animals in the zoo

art: OpenClipartVectors
at pixabay.com (CCO)

- Recurrent neural networks are not covered in this subject
- If time permits, we will cover autoencoders. An autoencoder is an ANN trained in a specific way.
* E.g., a multilayer perceptron can be trained as an autoencoder, or a recurrent neural network can be trained as an autoencoder.

Multilayer Perceptron

Modelling non-linearity via function composition

Limitations of linear models

Some function are linearly separable, but many are not

AND

OR

XOR

Possible solution: composition
x_{1} XOR $x_{2}=\left(x_{1}\right.$ OR $\left.x_{2}\right)$ AND $\operatorname{not}\left(x_{1} \operatorname{AND} x_{2}\right)$

We are going to combine perceptrons ...

Simplified graphical representation

Perceptron model

- x_{1}, x_{2}-inputs

Compare this model to logistic regression

- w_{1}, w_{2} - synaptic weights
- w_{0} - bias weight
- f - activation function

Perceptorn is sort of a building block for ANN

- ANNs are not restricted to binary classification
- Nodes in ANN can have various activation functions

Step function

$$
\begin{aligned}
& f(s)= \begin{cases}1, & \text { if } s \geq 0 \\
0, & \text { if } s<0\end{cases} \\
& f(s)= \begin{cases}1, & \text { if } s \geq 0 \\
-1, & \text { if } s<0\end{cases} \\
& f(s)=\frac{1}{1+e^{-s}}
\end{aligned}
$$

Many others: tanh, rectifier, etc.

Feed-forward Artificial Neural Network

ANN as a function composition

you can add bias node $x_{0}=1$ to simplify equations: $r_{j}=\sum_{i=0}^{m} x_{i} v_{i j}$
similarly you can add bias node $u_{0}=1$ to
simplify equations: $s_{k}=\sum_{j=0}^{p} u_{j} w_{j k}$

ANN in supervised learning

- ANNs can be naturally adapted to various supervised learning setups, such as univariate and multivariate regression, as well as binary and multilabel classification
- Univariate regression $y=f(\boldsymbol{x})$
* e.g., linear regression earlier in the course
- Multivariate regression $\boldsymbol{y}=f(\boldsymbol{x})$
* predicting values for multiple continuous outcomes
- Binary classification
* e.g., predict whether a patient has type II diabetes
- Multivariate classification
* e.g., handwritten digits recognition with labels "1", "2", etc.

The power of ANN as a non-linear model

- ANNs are capable of approximating various non-linear functions, e.g., $z(x)=x^{2}$ and $z(x)=\sin x$
- For example, consider the following network. In this example, hidden unit activation functions are tanh

The power of ANN as a non-linear model

- ANNs are capable of approximating various non-linear functions, e.g., $z(x)=x^{2}$ and $z(x)=\sin x$

Blue points are the function values evaluated at different x. Red lines are the predictions from the ANN.
Dashed lines are outputs of the hidden units

- Universal approximation theorem (Cybenko 1989): An ANN with a hidden layer with a finite number of units, and mild assumptions on the activation function, can approximate continuous functions on compact subsets of \boldsymbol{R}^{n} arbitrarily well

How to train your dragon-network?

- You know the drill: Define the loss function and find parameters that minimise the loss on training data

- In the following, we are going to use stochastic gradient descent with a batch size of one. That is, we will process training examples one by one

Adapted from Movie Poster from Flickr user jdxyw (CC BY-SA 2.0)

Training setup: univariate regression

- In what follows we consider univariate regression setup
- Moreover, we will use identity output activation function $z=h(s)=s=\sum_{j=0}^{p} u_{j} w_{j}$
- This will simplify description of backpropagation. In other settings, the training procedure is similar

Training setup: univariate regression

- How many parameters does this ANN have? Bias nodes x_{0} and u_{0} are present, but not shown

$$
\begin{aligned}
& m p+(p+1) \\
& (m+2) p+1
\end{aligned}
$$

$$
(m+1) p
$$

Loss function for ANN training

- In online training, we need to define the loss between a single training example $\{\boldsymbol{x}, \boldsymbol{y}\}$ and ANN's prediction $\hat{f}(\boldsymbol{x}, \boldsymbol{\theta})=z$, where $\boldsymbol{\theta}$ is a parameter vector comprised of all coefficients $v_{i j}$ and w_{j}
- For regression we can use good old squared error

$$
L=\frac{1}{2}(\hat{f}(\boldsymbol{x}, \boldsymbol{\theta})-y)^{2}=\frac{1}{2}(z-y)^{2}
$$

(the constant is used for mathematical convenience, see later)

- Training means finding the minimum of L as a function of parameter vector $\boldsymbol{\theta}$
* Fortunately $L(\boldsymbol{\theta})$ is a differentiable function
* Unfortunately there is no analytic solution in general

Stochastic gradient descent for ANN

Choose initial guess $\boldsymbol{\theta}^{(0)}, k=0$
Here $\boldsymbol{\theta}$ is a set of all weights form all layers
For i from 1 to T (epochs)
For j from 1 to N (training examples)
Consider example $\left\{\boldsymbol{x}_{\boldsymbol{j}}, y_{j}\right\}$
$\underline{\text { Update: }} \boldsymbol{\theta}^{(i+1)}=\boldsymbol{\theta}^{(i)}-\eta \boldsymbol{\nabla} L\left(\boldsymbol{\theta}^{(i)}\right)$

$$
L=\frac{1}{2}\left(z_{j}-y_{j}\right)^{2}
$$

Need to compute partial derivatives $\frac{\partial L}{\partial v_{i j}}$ and $\frac{\partial L}{\partial w_{j}}$

Backpropagation = "backward propagation of errors"

Calculating the gradient of a loss function

Backpropagation: start with the chain rule

- Recall that the output z of an ANN is a function composition, and hence $L(z)$ is also a composition

$$
\begin{aligned}
& * L=0.5(z-y)^{2}=0.5(h(s)-y)^{2}=0.5(s-y)^{2} \\
& *=0.5\left(\sum_{j=0}^{p} u_{j} w_{j}-y\right)^{2}=0.5\left(\sum_{j=0}^{p} g\left(r_{j}\right) w_{j}-y\right)^{2}=\ldots
\end{aligned}
$$

- Backpropagation makes use of this fact by applying the chain rule for derivatives
- $\frac{\partial L}{\partial w_{j}}=\frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial w_{j}}$
- $\frac{\partial L}{\partial v_{i j}}=\frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial u_{j}} \frac{\partial u_{j}}{\partial r_{j}} \frac{\partial r_{j}}{\partial v_{i j}}$

Backpropagation: intermediate step

- Apply the chain rule
- $\frac{\partial L}{\partial w_{j}}=\frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial w_{j}}$
- $\frac{\partial L}{\partial v_{i j}}=\frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial u_{j}} \frac{\partial u_{j}}{\partial r_{j}} \frac{\partial r_{j}}{\partial v_{i j}}$

- Now define

$$
\begin{gathered}
\delta \equiv \frac{\partial L}{\partial s}=\frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \\
\varepsilon_{j} \equiv \frac{\partial L}{\partial r_{j}}=\frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial u_{j}} \frac{\partial u_{j}}{\partial r_{j}}
\end{gathered}
$$

- Here $L=0.5(z-y)^{2}$ and $z=s$ Thus $\delta=(z-y)$
- Here $s=\sum_{j=0}^{p} u_{j} w_{j}$ and

$$
\begin{aligned}
& u_{j}=h\left(r_{j}\right) \\
& \text { Thus } \varepsilon_{j}=\delta w_{j} h^{\prime}\left(r_{j}\right)
\end{aligned}
$$

Backpropagation equations

- We have

$$
\begin{aligned}
& * \frac{\partial L}{\partial w_{j}}=\delta \frac{\partial s}{\partial w_{j}} \\
& * \frac{\partial L}{\partial v_{i j}}=\varepsilon_{j} \frac{\partial r_{j}}{\partial v_{i j}}
\end{aligned}
$$

... where

* $\delta=\frac{\partial L}{\partial s}=(z-y)$
* $\varepsilon_{j}=\frac{\partial L}{\partial r_{j}}=\delta w_{j} h^{\prime}\left(r_{j}\right)$
- Recall that
* $s=\sum_{j=0}^{p} u_{j} w_{j}$
* $r_{j}=\sum_{i=0}^{m} x_{i} v_{i j}$

- So $\frac{\partial s}{\partial w_{j}}=u_{j}$ and $\frac{\partial r_{j}}{\partial v_{i j}}=x_{i}$
- We have

$$
\begin{aligned}
& * \frac{\partial L}{\partial w_{j}}=\delta u_{j}=(z-y) u_{j} \\
& * \frac{\partial L}{\partial v_{i j}}=\varepsilon_{j} x_{i}=\delta w_{j} h^{\prime}\left(r_{j}\right) x_{i}
\end{aligned}
$$

Forward propagation

- Use current estimates of $v_{i j}$ and w_{j}
- Calculate r_{j}, u_{j}, s and z

- Backpropagation equations

$$
\begin{aligned}
& * \frac{\partial L}{\partial w_{j}}=\delta u_{j}=(z-y) u_{j} \\
& * \frac{\partial L}{\partial v_{i j}}=\varepsilon_{j} x_{i}=\delta w_{j} h^{\prime}\left(r_{j}\right) x_{i}
\end{aligned}
$$

Backward propagation of errors

$$
\frac{\partial L}{\partial v_{i j}}=\varepsilon_{j} x_{i} \longleftarrow \varepsilon_{j}=\delta w_{j} h^{\prime}\left(r_{j}\right) \longleftarrow \frac{\partial L}{\partial w_{j}}=\delta u_{j} \swarrow \delta=(z-y)
$$

- Backpropagation equations

$$
\begin{aligned}
& * \frac{\partial L}{\partial w_{j}}=\delta u_{j}=(z-y) u_{j} \\
& * \frac{\partial L}{\partial v_{i j}}=\varepsilon_{j} x_{i}=\delta w_{j} h^{\prime}\left(r_{j}\right) x_{i}
\end{aligned}
$$

Some further notes on ANN training

- ANN is a flexible model (recall universal approximation theorem), but the flipside of it is over-parameterisation, hence tendency to overfitting
- Starting weights are usually small random values distributed around zero
- Implicit regularisation: early stopping
* With some activation functions, this shrinks the ANN towards a linear model (why?)

Explicit regularisation

- Alternatively, an explicit regularisation can be used, much like in ridge regression
- Instead of minimising the loss L, minimise regularised function $L+\lambda\left(\sum_{i=0}^{m} \sum_{j=1}^{p} v_{i j}^{2}+\sum_{j=0}^{p} w_{j}^{2}\right)$
- This will simply add $2 \lambda v_{i j}$ and $2 \lambda w_{j}$ terms to the partial derivatives
- With some activation functions this also shrinks the ANN towards a linear model

This lecture

- Multilayer perceptron
* Model structure
* Universal approximation
* Training preliminaries
- Backpropagation
* Step-by-step derivation
* Notes on regularisation

