Lecture 6. Notes on Linear Algebra. Perceptron

COMP90051 Statistical Machine Learning

Semester 2, 2017
Lecturer: Andrey Kan

This lecture

- Notes on linear algebra
* Vectors and dot products
* Hyperplanes and vector normals
- Perceptron
* Introduction to Artificial Neural Networks
* The perceptron model
* Stochastic gradient descent

Notes on Linear Algebra

Link between geometric and algebraic interpretation of ML methods

What are vectors?

Suppose $\boldsymbol{u}=\left[u_{1}, u_{2}\right]^{\prime}$. What does \boldsymbol{u} really represent?

Ordered set of numbers $\left\{u_{1}, u_{2}\right\}$

Cartesian coordinates of a point

A direction

Dot product: algebraic definition

- Given two m-dimensional vectors \boldsymbol{u} and \boldsymbol{v}, their dot product is $\boldsymbol{u} \cdot \boldsymbol{v} \equiv \boldsymbol{u}^{\prime} \boldsymbol{v} \equiv \sum_{i=1}^{m} u_{i} v_{i}$
* E.g., weighted sum of terms is a dot product $\boldsymbol{x}^{\prime} \boldsymbol{w}$
- Verify that if k is a constant and $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} are vectors of the same size then

$$
\begin{gathered}
(k \boldsymbol{a})^{\prime} \boldsymbol{b}=k\left(\boldsymbol{a}^{\prime} \boldsymbol{b}\right)=\boldsymbol{a}^{\prime}(k \boldsymbol{b}) \\
\boldsymbol{a}^{\prime}(\boldsymbol{b}+\boldsymbol{c})=\boldsymbol{a}^{\prime} \boldsymbol{b}+\boldsymbol{a}^{\prime} \boldsymbol{c}
\end{gathered}
$$

Dot product: geometric definition

- Given two m-dimensional vectors \boldsymbol{u} and \boldsymbol{v}, their dot product is $\boldsymbol{u} \cdot \boldsymbol{v} \equiv \boldsymbol{u}^{\prime} \boldsymbol{v} \equiv\|\boldsymbol{u}\|\|\boldsymbol{v}\| \cos \theta$
* Here $\|\boldsymbol{u}\|$ and $\|\boldsymbol{v}\|$ are $L 2$ norms (i.e., Euclidean lengths) for vectors \boldsymbol{u} and \boldsymbol{v}
* and θ is the angle between vectors

The scalar projection of \boldsymbol{u} onto \boldsymbol{v} is given by

$$
u_{v}=\|\boldsymbol{u}\| \cos \theta
$$

Thus dot product is

$$
\boldsymbol{u}^{\prime} \boldsymbol{v}=u_{\boldsymbol{v}}\|\boldsymbol{v}\|=v_{\boldsymbol{u}}\|\boldsymbol{u}\|
$$

Equivalence of definitions

- Lemma: The algebraic and geometric definitions are identical
- Proof sketch:
* Express the vectors using the standard vector basis $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}$ in $\boldsymbol{R}^{m}, \boldsymbol{u}=\sum_{i=1}^{m} u_{i} \boldsymbol{e}_{i}$, and $\boldsymbol{v}=\sum_{i=1}^{m} v_{i} \boldsymbol{e}_{i}$
* Vectors \boldsymbol{e}_{i} are an orthonormal basic, they have unit length and orthogonal to each other, so $\boldsymbol{e}_{i}^{\prime} \boldsymbol{e}_{i}=1$ and $\boldsymbol{e}_{i}^{\prime} \boldsymbol{e}_{j}=0$ for $i \neq j$

$$
\begin{aligned}
& \boldsymbol{u}^{\prime} \boldsymbol{v}=\boldsymbol{u}^{\prime} \sum_{i=1}^{m} v_{i} \boldsymbol{e}_{i}=\sum_{i=1}^{m} v_{i}\left(\boldsymbol{u}^{\prime} \boldsymbol{e}_{i}\right) \\
= & \sum_{i=1}^{m} v_{i}\left(\|\boldsymbol{u}\|\left\|\boldsymbol{e}_{i}\right\| \cos \theta_{i}\right)=\sum_{i=1}^{m} v_{i} u_{i}
\end{aligned}
$$

Geometric properties of the dot product

- If the two vectors are orthogonal then $\boldsymbol{u}^{\prime} \boldsymbol{v}=0$
- If the two vectors are parallel then $\boldsymbol{u}^{\prime} \boldsymbol{v}=\|\boldsymbol{u}\|\|\boldsymbol{v}\|$, if they are anti-parallel then $\boldsymbol{u}^{\prime} \boldsymbol{v}=-\|\boldsymbol{u}\|\|\boldsymbol{v}\|$
- $\boldsymbol{u}^{\prime} \boldsymbol{u}=\|\boldsymbol{u}\|^{2}$, so $\|\boldsymbol{u}\|=\sqrt{u_{1}^{2}+\cdots+u_{m}^{2}}$ defines the Euclidean vector length

Hyperplanes and normal vectors

- A hyperplane defined by parameters \boldsymbol{w} and b is a set of points \boldsymbol{x} that satisfy $\boldsymbol{x}^{\prime} \boldsymbol{w}+b=0$
- In 2D, a hyperplane is a line: a line is a set of points that satisfy $w_{1} x_{1}+w_{2} x_{2}+b=0$

A normal vector for a hyperplane is a vector perpendicular to that hyperplane

Hyperplanes and normal vectors

- Consider a hyperplane defined by parameters \boldsymbol{w} and b. Note that \boldsymbol{w} is itself a vector
- Lemma: Vector \boldsymbol{w} is a normal vector to the hyperplane
- Proof sketch:
* Choose any two points \boldsymbol{u} and \boldsymbol{v} on the hyperplane. Note that vector $(\boldsymbol{u}-\boldsymbol{v})$ lies on the hyperplane
* Consider dot product $(\boldsymbol{u}-\boldsymbol{v})^{\prime} \boldsymbol{w}=\boldsymbol{u}^{\prime} \boldsymbol{w}-\boldsymbol{v}^{\prime} \boldsymbol{w}$

$$
=\left(\boldsymbol{u}^{\prime} \boldsymbol{w}+b\right)-\left(\boldsymbol{v}^{\prime} \boldsymbol{w}+b\right)=0
$$

* Thus $(\boldsymbol{u}-\boldsymbol{v})$ lies on the hyperplane, but is perpendicular to \boldsymbol{w}, and so \boldsymbol{w} is a vector normal

Example in 2D

- Consider a line defined by w_{1}, w_{2} and b
- Vector $\boldsymbol{w}=\left[w_{1}, w_{2}\right]^{\prime}$ is a normal vector

Is logistic regression a linear method?

Logistic regression is a linear classifier

- Logistic regression model:

$$
P(y=1 \mid \boldsymbol{x})=\frac{1}{1+\exp \left(-\boldsymbol{x}^{\prime} \boldsymbol{w}\right)}
$$

- Classification rule:

$$
\text { if }\left(P(\mathcal{Y}=1 \mid x)>\frac{1}{2}\right) \text { then class " } 1 \text { ", else class " } 0 \text { " }
$$

- Decision boundary:

$$
\begin{gathered}
\frac{1}{1+\exp \left(-\boldsymbol{x}^{\prime} \boldsymbol{w}\right)}=\frac{1}{2} \\
\exp \left(-\boldsymbol{x}^{\prime} \boldsymbol{w}\right)=1 \\
\boldsymbol{x}^{\prime} \boldsymbol{w}=0
\end{gathered}
$$

The Perceptron Model

A building block for artificial neural networks, yet another linear classifier

Biological inspiration

- Humans perform well at many tasks that matter
- Originally neural networks were an attempt to mimic the human brain

Artificial neural network

- As a crude approximation, the human brain can be thought as a mesh of interconnected processing nodes (neurons) that relay electrical signals
- Artificial neural network is a network of processing elements
- Each element converts inputs to output
- The output is a function (called activation function) of a weighted sum of inputs

Outline

- In order to use an ANN we need (a) to design network topology and (b) adjust weights to given data
* In this course, we will exclusively focus on task (b) for a particular class of networks called feed forward networks
- Training an ANN means adjusting weights for training data given a pre-defined network topology
- We will come back to ANNs and discuss ANN training in the next lecture
- Right now we will turn our attention to an individual network element because it is an interesting model in itself

Perceptron model

- x_{1}, x_{2}-inputs

Compare this model to logistic regression

- w_{1}, w_{2} - synaptic weights
- w_{0} - bias weight
- f - activation function

Perceptron is a linear binary classifier

Perceptron is a	Predict class A if $s \geq 0$
binary classifier:	Predict class B if $s<0$
	where $s=\sum_{i=0}^{m} x_{i} w_{i}$

Perceptron is a linear classifier: s is a linear function of inputs, and the decision boundary is linear

Exercise: find weights of a perceptron capable of perfect classification of the following dataset

x_{1}	x_{2}	y
0	0	Class B
0	1	Class B
1	0	Class B
1	1	Class A

Loss function for perceptron

- Recall that "training" means finding weights that minimise some loss. Therefore, we proceed with considering the loss function for perceptron
- Our task is binary classification. Let's arbitrarily encode one class as +1 and the other as -1 . So each training example is now $\{\boldsymbol{x}, y\}$, where y is either +1 or -1
- Recall that, in a perceptron, $s=\sum_{i=0}^{m} x_{i} w_{i}$, and the sign of s determines the predicted class: +1 if $s>0$, and -1 if $s<0$
- Consider a single training example. If y and s have the same sign then the example is classified correctly. If y and s have different signs, the example is misclassified

Loss function for perceptron

- Consider a single training example. If y and s have the same sign then the example is classified correctly. If y and s have different signs, the example is misclassified
- The perceptron uses a loss function in which there is no penalty for correctly classified examples, while the penalty (loss) is equal to s for misclassified examples*
- Formally:
* $L(s, y)=0$ if both s, y have the same sign
* $L(s, y)=|s|$ if both s, y have different signs

- This can be re-written as $L(s, y)=\max (0,-s y)$

Stochastic gradient descent

- Split all training examples in B batches
- Choose initial $\boldsymbol{\theta}^{(1)}$
- For i from 1 to T

```
Iterations over the
entire dataset are
    called epochs
```

- For j from 1 to B
- Do gradient descent update using data from batch j
- Advantage of such an approach: computational feasibility for large datasets

Perceptron training algorithm

Choose initial guess $\boldsymbol{w}^{(0)}, k=0$
For i from 1 to T (epochs)
For j from 1 to N (training examples)

$$
\text { Consider example }\left\{\boldsymbol{x}_{j}, y_{j}\right\}
$$

$$
\text { Update }^{*}: \boldsymbol{w}^{(k++)}=\boldsymbol{w}^{(k)}-\eta \boldsymbol{\nabla} L\left(\boldsymbol{w}^{(k)}\right)
$$

$$
\begin{gathered}
L(\boldsymbol{w})=\max _{m}^{m}(0,-s y) \\
s=\sum_{i=0}^{m} x_{i} w_{i} \\
\eta \text { is learning rate }
\end{gathered}
$$

*There is no derivative when $s=0$, but this case is handled explicitly in the algorithm, see next slides

Perceptron training rule

- We have $\frac{\partial L}{\partial w_{i}}=0$ when $s y>0$
* We don't need to do update when an example is correctly classified
- We have $\frac{\partial L}{\partial w_{i}}=-x_{i}$ when $y=1$ and $s<0$
- We have $\frac{\partial L}{\partial w_{i}}=x_{i}$ when $y=-1$ and $s>0$
- $s=\sum_{i=0}^{m} x_{i} w_{i}$

Perceptron training algorithm

When classified correctly, weights are unchanged
When misclassified: $\boldsymbol{w}^{(k+1)}=-\eta(\pm \boldsymbol{x})$
($\eta>0$ is called learning rate)

$$
\begin{array}{ll}
\text { If } y=1 \text {, but } s<0 & \frac{\text { If } y=-1, \text { but } s \geq 0}{w_{i} \leftarrow w_{i}+\eta x_{i}}
\end{array}
$$

Convergence Theorem: if the training data is linearly separable, the algorithm is guaranteed to converge to a solution. That is, there exist a finite K such that $L\left(\boldsymbol{w}^{K}\right)=0$

Perceptron convergence theorem

- Assumptions
* Linear separability: There exists \boldsymbol{w}^{*} so that $y_{i}\left(\boldsymbol{w}^{*}\right)^{\prime} \boldsymbol{x}_{i} \geq \gamma$ for all training data $i=1, \ldots, N$ and some positive γ.
* Bounded data: $\left\|x_{i}\right\| \leq R$ for $i=1, \ldots, N$ and some finite R.
- Proof sketch
* Establish that $\left(\boldsymbol{w}^{*}\right)^{\prime} \boldsymbol{w}^{(k)} \geq\left(\boldsymbol{w}^{*}\right)^{\prime} \boldsymbol{w}^{(k-1)}+\gamma$
* It then follows that $\left(\boldsymbol{w}^{*}\right)^{\prime} \boldsymbol{w}^{(k)} \geq k \gamma$
* Establish that $\left\|\boldsymbol{w}^{(k)}\right\|^{2} \leq k R^{2}$
* Note that $\cos \left(\boldsymbol{w}^{*}, \boldsymbol{w}^{(k)}\right)=\frac{\left(\boldsymbol{w}^{*}\right)^{\prime} \boldsymbol{w}^{(k)}}{\left\|\boldsymbol{w}^{*}\right\|\left\|\boldsymbol{w}^{(k)}\right\|}$
* Use the fact that $\cos (\ldots) \leq 1$
* Arrive at $k \leq \frac{R^{2}\left\|\boldsymbol{w}^{*}\right\|^{2}}{\gamma}$

Pros and cons of perceptron learning

- If the data is linearly separable, the perceptron training algorithm will converge to a correct solution
* There is a formal proof \leftarrow good!
* It will converge to some solution (separating boundary), one of infinitely many possible \leftarrow bad!
- However, if the data is not linearly separable, the training will fail completely rather than give some approximate solution
* Ugly ${ }^{*}$

Perceptron Learning Example

Basic setup

Perceptron Learning Example

Start with random weights

Perceptron Learning Example

Consider training example 1

$$
\begin{aligned}
& \underline{0.2 x_{1}+0.0 x_{2}-0.1>0} \\
& w_{1} \leftarrow w_{1}-\eta x_{1}=0.1 \\
& w_{2} \leftarrow w_{2}-\eta x_{2}=-0.1 \\
& w_{0} \leftarrow w_{0}-\eta=-0.2
\end{aligned}
$$

Perceptron Learning Example

Update weights

Perceptron Learning Example

Consider training example 2

$$
\begin{align*}
& x_{2} \uparrow \\
& \underline{0.1 x_{1}-0.1 x_{2}-0.2<0} \\
& w_{1} \leftarrow w_{1}+\eta x_{1}=0.3 \tag{0}\\
& w_{2} \leftarrow w_{2}+\eta x_{2}=0.0 \tag{2,1}\\
& w_{0} \leftarrow w_{0}+\eta=-0.1 \\
& \text { - class }-1
\end{align*}
$$

Perceptron Learning Example

Update weights

Perceptron Learning Example

Further examples

x_{2}		$\stackrel{\mathrm{O}}{4^{\text {th }} \text { point }}$
$\underline{0.3 x_{1}-0.0 x_{2}-0.1>0}$		
$3{ }^{\text {rd }}$ point: correctly classified		
$4^{\text {th }}$ point: incorrect, update	0	\square
etc.		
O class -1		- $(1.5,0.5)$
- class 1		

Perceptron Learning Example

Further examples

Eventually, all the data will be correctly classified (provided it is linearly separable)
-

This lecture

- Notes on linear algebra
* Vectors and dot products
* Hyperplanes and vector normals
- Perceptron
* Introduction to Artificial Neural Networks
* The perceptron model
* Training algorithm

