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This lecture

• Notes on linear algebra
∗ Vectors and dot products
∗ Hyperplanes and vector normals

• Perceptron
∗ Introduction to Artificial Neural Networks
∗ The perceptron model
∗ Stochastic gradient descent
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Notes on Linear Algebra

Link between geometric and algebraic 
interpretation of ML methods
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What are vectors?
Suppose 𝒖𝒖 = 𝑢𝑢1,𝑢𝑢2 ′. What does 𝒖𝒖 really 
represent?

Ordered set of numbers {𝑢𝑢1,𝑢𝑢2}

Cartesian coordinates of a point

A direction
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𝑢𝑢1

𝑢𝑢2

𝑢𝑢1

𝑢𝑢2

0

art: OpenClipartVectors at 
pixabay.com (CC0)
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Dot product: algebraic definition

• Given two 𝑚𝑚-dimensional vectors 𝒖𝒖 and 𝒗𝒗, their dot 
product is 𝒖𝒖 ⋅ 𝒗𝒗 ≡ 𝒖𝒖′𝒗𝒗 ≡ ∑𝑖𝑖=1𝑚𝑚 𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖
∗ E.g., weighted sum of terms is a dot product 𝒙𝒙′𝒘𝒘

• Verify that if 𝑘𝑘 is a constant and 𝒂𝒂,𝒃𝒃 and 𝒄𝒄 are 
vectors of the same size then

𝑘𝑘𝒂𝒂 ′𝒃𝒃 = 𝑘𝑘 𝒂𝒂′𝒃𝒃 = 𝒂𝒂′ 𝑘𝑘𝒃𝒃
𝒂𝒂′ 𝒃𝒃 + 𝒄𝒄 = 𝒂𝒂′𝒃𝒃 + 𝒂𝒂′𝒄𝒄

5
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Dot product: geometric definition
• Given two 𝑚𝑚-dimensional vectors 𝒖𝒖 and 𝒗𝒗, their dot 

product is 𝒖𝒖 ⋅ 𝒗𝒗 ≡ 𝒖𝒖′𝒗𝒗 ≡ 𝒖𝒖 𝒗𝒗 cos𝜃𝜃
∗ Here 𝒖𝒖 and 𝒗𝒗 are L2 norms (i.e., Euclidean lengths) 

for vectors 𝒖𝒖 and 𝒗𝒗
∗ and 𝜃𝜃 is the angle between vectors

6

𝒖𝒖

𝒗𝒗

𝜃𝜃

The scalar projection of 
𝒖𝒖 onto 𝒗𝒗 is given by

𝑢𝑢𝒗𝒗 = 𝒖𝒖 cos 𝜃𝜃

Thus dot product is
𝒖𝒖′𝒗𝒗 = 𝑢𝑢𝒗𝒗 𝒗𝒗 = 𝑣𝑣𝒖𝒖 𝒖𝒖
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Equivalence of definitions
• Lemma: The algebraic and geometric definitions are 

identical 

• Proof sketch:
∗ Express the vectors using the standard vector basis 𝒆𝒆1, … , 𝒆𝒆𝑚𝑚 in 
𝑹𝑹𝑚𝑚, 𝒖𝒖 = ∑𝑖𝑖=1𝑚𝑚 𝑢𝑢𝑖𝑖𝒆𝒆𝑖𝑖, and 𝒗𝒗 = ∑𝑖𝑖=1𝑚𝑚 𝑣𝑣𝑖𝑖𝒆𝒆𝑖𝑖

∗ Vectors 𝒆𝒆𝑖𝑖 are an orthonormal basic, they have unit length and 
orthogonal to each other, so 𝒆𝒆𝑖𝑖′𝒆𝒆𝑖𝑖 = 1 and 𝒆𝒆𝑖𝑖′𝒆𝒆𝑗𝑗 = 0 for 𝑖𝑖 ≠ 𝑗𝑗

𝒖𝒖′𝒗𝒗 = 𝒖𝒖′�
𝑖𝑖=1

𝑚𝑚

𝑣𝑣𝑖𝑖𝒆𝒆𝑖𝑖 = �
𝑖𝑖=1

𝑚𝑚

𝑣𝑣𝑖𝑖 𝒖𝒖′𝒆𝒆𝑖𝑖

= �
𝑖𝑖=1

𝑚𝑚

𝑣𝑣𝑖𝑖 𝒖𝒖 𝒆𝒆𝑖𝑖 cos𝜃𝜃𝑖𝑖 = �
𝑖𝑖=1

𝑚𝑚

𝑣𝑣𝑖𝑖𝑢𝑢𝑖𝑖
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Geometric properties of the dot product
• If the two vectors are orthogonal then 𝒖𝒖′𝒗𝒗 = 0

• If the two vectors are parallel then 𝒖𝒖′𝒗𝒗 = 𝒖𝒖 𝒗𝒗 , if 
they are anti-parallel then 𝒖𝒖′𝒗𝒗 = − 𝒖𝒖 𝒗𝒗

• 𝒖𝒖′𝒖𝒖 = 𝒖𝒖 2, so 𝒖𝒖 = 𝑢𝑢12 + ⋯+ 𝑢𝑢𝑚𝑚2 defines the 
Euclidean vector length
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𝒖𝒖

𝒗𝒗

𝜃𝜃



Statistical Machine Learning (S2 2017) Deck 6

Hyperplanes and normal vectors
• A hyperplane defined by parameters 𝒘𝒘 and 𝑏𝑏 is a set 

of points 𝒙𝒙 that satisfy 𝒙𝒙′𝒘𝒘 + 𝑏𝑏 = 0

• In 2D, a hyperplane is a line: a line is a set of points 
that satisfy 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑏𝑏 = 0

9

𝑥𝑥1

𝑥𝑥2 A normal vector for a 
hyperplane is a vector 
perpendicular to that  
hyperplane
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Hyperplanes and normal vectors
• Consider a hyperplane defined by parameters 𝒘𝒘 and 
𝑏𝑏. Note that 𝒘𝒘 is itself a vector

• Lemma: Vector 𝒘𝒘 is a normal vector to the 
hyperplane

• Proof sketch:
∗ Choose any two points 𝒖𝒖 and 𝒗𝒗 on the hyperplane. Note 

that vector 𝒖𝒖 − 𝒗𝒗 lies on the hyperplane
∗ Consider dot product 𝒖𝒖 − 𝒗𝒗 ′𝒘𝒘 = 𝒖𝒖′𝒘𝒘 − 𝒗𝒗′𝒘𝒘

= 𝒖𝒖′𝒘𝒘 + 𝑏𝑏 − 𝒗𝒗′𝒘𝒘 + 𝑏𝑏 = 0
∗ Thus 𝒖𝒖 − 𝒗𝒗 lies on the hyperplane, but is perpendicular 

to 𝒘𝒘, and so 𝒘𝒘 is a vector normal

10
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Example in 2D
• Consider a line defined by 𝑤𝑤1, 𝑤𝑤2 and 𝑏𝑏

• Vector 𝒘𝒘 = 𝑤𝑤1,𝑤𝑤2 ′ is a normal vector

11

𝑤𝑤2

𝑤𝑤1 𝑥𝑥2 = −
𝑤𝑤1
𝑤𝑤2

𝑥𝑥1 −
𝑏𝑏
𝑤𝑤2

𝑥𝑥1

𝑥𝑥2
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Is logistic regression a linear method?

12
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Logistic regression is a linear classifier
• Logistic regression model:

𝑃𝑃 𝒴𝒴 = 1|𝒙𝒙 =
1

1 + exp −𝒙𝒙′𝒘𝒘

• Classification rule:

if 𝑃𝑃 𝒴𝒴 = 1|𝒙𝒙 > 1
2

then class “1”, else class “0”

• Decision boundary:
1

1 + exp −𝒙𝒙′𝒘𝒘
=

1
2

exp −𝒙𝒙′𝒘𝒘 = 1
𝒙𝒙′𝒘𝒘 = 0

13
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The Perceptron Model

A building block for artificial neural 
networks, yet another linear classifier

14
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Biological inspiration

• Humans perform well at many tasks that matter

• Originally neural networks were an attempt to 
mimic the human brain

15

photo: Alvesgaspar, 
Wikimedia Commons, CC3
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Artificial neural network

• Artificial neural network is  a 
network of processing 
elements

• Each element converts inputs 
to output

• The output is a function 
(called activation function) of 
a weighted sum of inputs

16

• As a crude approximation, the human brain can be thought 
as a mesh of interconnected processing nodes (neurons) 
that relay electrical signals

…

…

…
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Outline
• In order to use an ANN we need (a) to design network 

topology and (b) adjust weights to given data
∗ In this course, we will exclusively focus on task (b) for a particular 

class of networks called feed forward networks

• Training an ANN means adjusting weights for training data 
given a pre-defined network topology

• We will come back to ANNs and discuss ANN training in the 
next lecture

• Right now we will turn our attention to an individual network 
element because it is an interesting model in itself

17
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Perceptron model

18

• 𝑥𝑥1, 𝑥𝑥2 – inputs

• 𝑤𝑤1, 𝑤𝑤2 – synaptic weights

• 𝑤𝑤0 – bias weight

• 𝑓𝑓 – activation function

𝑥𝑥1

Σ 𝑓𝑓𝑥𝑥2

1

𝑓𝑓(𝑠𝑠)
𝑠𝑠

× 𝑤𝑤1

× 𝑤𝑤2

× 𝑤𝑤0

Compare this 
model to logistic 

regression
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Perceptron is a linear binary classifier

19

Perceptron is a 
binary classifier:

Predict class A if 𝑠𝑠 ≥ 0
Predict class B if 𝑠𝑠 < 0
where 𝑠𝑠 = ∑𝑖𝑖=0𝑚𝑚 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖

Perceptron is a linear classifier: 𝑠𝑠
is a linear function of inputs, and 
the decision boundary is linear

plane with 
data points

decision 
boundary

𝑥𝑥1

𝑥𝑥2

plane with 
values of 𝑠𝑠

Example for 
2D data
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Exercise: find weights of 
a perceptron capable of 
perfect classification of 
the following dataset

art: OpenClipartVectors
at pixabay.com (CC0)

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒚𝒚

0 0 Class B

0 1 Class B

1 0 Class B

1 1 Class A
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Loss function for perceptron
• Recall that “training” means finding weights that minimise 

some loss. Therefore, we proceed with considering the loss 
function for perceptron

• Our task is binary classification. Let’s arbitrarily encode one 
class as +1 and the other as −1. So each training example is 
now {𝒙𝒙,𝑦𝑦}, where 𝑦𝑦 is either +1 or −1

• Recall that, in a perceptron, 𝑠𝑠 = ∑𝑖𝑖=0𝑚𝑚 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖, and the sign of 𝑠𝑠
determines the predicted class: +1 if 𝑠𝑠 > 0, and −1 if 𝑠𝑠 < 0

• Consider a single training example. If 𝑦𝑦 and 𝑠𝑠 have the same 
sign then the example is classified correctly. If 𝑦𝑦 and 𝑠𝑠 have 
different signs, the example is misclassified

21
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Loss function for perceptron
• Consider a single training example. If 𝑦𝑦 and 𝑠𝑠 have the same 

sign then the example is classified correctly. If 𝑦𝑦 and 𝑠𝑠 have 
different signs, the example is misclassified

• The perceptron uses a loss function in which there is no 
penalty for correctly classified examples, while the penalty 
(loss) is equal to 𝑠𝑠 for misclassified examples*

• Formally:
∗ 𝐿𝐿 𝑠𝑠, 𝑦𝑦 = 0 if both 𝑠𝑠, 𝑦𝑦 have the same sign
∗ 𝐿𝐿 𝑠𝑠, 𝑦𝑦 = 𝑠𝑠 if both 𝑠𝑠,𝑦𝑦 have different signs

• This can be re-written as 𝐿𝐿 𝑠𝑠,𝑦𝑦 = max 0,−𝑠𝑠𝑦𝑦

22* This is similar, but not identical to another widely used loss function called hinge loss

𝐿𝐿(𝑠𝑠, 𝑦𝑦)

𝑠𝑠𝑦𝑦
0
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Stochastic gradient descent
• Split all training examples in 𝐵𝐵 batches

• Choose initial 𝜽𝜽(1)

• For 𝑖𝑖 from 1 to 𝑇𝑇

• For 𝑗𝑗 from 1 to 𝐵𝐵

• Do gradient descent update using data from batch 𝑗𝑗

• Advantage of such an approach: computational feasibility for 
large datasets

23

Iterations over the 
entire dataset are 

called epochs
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𝐿𝐿(𝒘𝒘) = max 0,−𝑠𝑠𝑦𝑦

𝑠𝑠 = �
𝑖𝑖=0

𝑚𝑚

𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖

𝜂𝜂 is learning rate

Perceptron training algorithm
Choose initial guess 𝒘𝒘(0), 𝑘𝑘 = 0

For 𝑖𝑖 from 1 to 𝑇𝑇 (epochs)

For 𝑗𝑗 from 1 to 𝑁𝑁 (training examples)

Consider example 𝒙𝒙𝑗𝑗 , 𝑦𝑦𝑗𝑗

Update*: 𝒘𝒘 𝑘𝑘++ = 𝒘𝒘 𝑘𝑘 − 𝜂𝜂𝛁𝛁𝐿𝐿(𝒘𝒘(𝑘𝑘))

24

*There is no derivative 
when 𝑠𝑠 = 0, but this case 
is handled explicitly in the 
algorithm, see next slides
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Perceptron training rule

• We have 𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤𝑖𝑖

= 0 when 𝑠𝑠𝑦𝑦 > 0
∗ We don’t need to do update when an example is correctly classified

• We have 𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤𝑖𝑖

= −𝑥𝑥𝑖𝑖 when 𝑦𝑦 = 1 and 𝑠𝑠 < 0

• We have 𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤𝑖𝑖

= 𝑥𝑥𝑖𝑖 when 𝑦𝑦 = −1 and 𝑠𝑠 > 0

• 𝑠𝑠 = ∑𝑖𝑖=0𝑚𝑚 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖

25

𝐿𝐿(𝑠𝑠, 𝑦𝑦)

𝑠𝑠𝑦𝑦
0
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Perceptron training algorithm

26

If 𝑦𝑦 = 1, but 𝑠𝑠 < 0
𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖 + 𝜂𝜂𝑥𝑥𝑖𝑖
𝑤𝑤0 ← 𝑤𝑤0 + 𝜂𝜂

When misclassified: 𝒘𝒘 𝑘𝑘+1 = −𝜂𝜂(±𝒙𝒙)

When classified correctly, weights are unchanged

(𝜂𝜂 > 0 is called learning rate)

If 𝑦𝑦 = −1, but 𝑠𝑠 ≥ 0
𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖 − 𝜂𝜂𝑥𝑥𝑖𝑖
𝑤𝑤0 ← 𝑤𝑤0 − 𝜂𝜂

Convergence Theorem: if the training data is 
linearly separable, the algorithm is guaranteed to 
converge to a solution. That is, there exist a finite 

𝐾𝐾 such that 𝐿𝐿 𝒘𝒘𝐾𝐾 = 0
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Perceptron convergence theorem
• Assumptions

∗ Linear separability: There exists 𝒘𝒘∗ so that 𝑦𝑦𝑖𝑖 𝒘𝒘∗ ′𝒙𝒙𝑖𝑖 ≥ 𝛾𝛾 for all 
training data 𝑖𝑖 = 1, … ,𝑁𝑁 and some positive 𝛾𝛾.

∗ Bounded data: 𝒙𝒙𝑖𝑖 ≤ 𝑅𝑅 for 𝑖𝑖 = 1, … ,𝑁𝑁 and some finite 𝑅𝑅.

• Proof sketch
∗ Establish that 𝒘𝒘∗ ′𝒘𝒘 𝑘𝑘 ≥ 𝒘𝒘∗ ′𝒘𝒘 𝑘𝑘−1 + 𝛾𝛾
∗ It then follows that 𝒘𝒘∗ ′𝒘𝒘 𝑘𝑘 ≥ 𝑘𝑘𝛾𝛾

∗ Establish that 𝒘𝒘 𝑘𝑘 2
≤ 𝑘𝑘𝑅𝑅2

∗ Note that cos 𝒘𝒘∗,𝒘𝒘 𝑘𝑘 = 𝒘𝒘∗ ′𝒘𝒘 𝑘𝑘

𝒘𝒘∗ 𝒘𝒘 𝑘𝑘

∗ Use the fact that cos … ≤ 1

∗ Arrive at 𝑘𝑘 ≤ 𝑅𝑅2 𝒘𝒘∗ 2

𝛾𝛾

27
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Pros and cons of perceptron learning
• If the data is linearly separable, the perceptron training 

algorithm will converge to a correct solution
∗ There is a formal proof  good!
∗ It will converge to some solution (separating boundary), one of 

infinitely many possible  bad!

• However, if the data is not linearly separable, the training will 
fail completely rather than give some approximate solution
∗ Ugly 

28
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Perceptron Learning Example

29

𝑥𝑥1

Σ 𝑓𝑓 �−1, 𝑠𝑠 < 0
1, 𝑠𝑠 ≥ 0

𝑠𝑠 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤0
𝑤𝑤1

𝑤𝑤2

𝑤𝑤0

𝑥𝑥2

1 (learning rate 𝜂𝜂 = 0.1)

Basic setup
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Perceptron Learning Example

30

𝑥𝑥1

Σ 𝑓𝑓 �−1, 𝑠𝑠 < 0
1, 𝑠𝑠 ≥ 0

𝑠𝑠 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤0𝑤𝑤1 = 0.2

𝑤𝑤2 = 0.0

𝑤𝑤0 = −0.1
𝑥𝑥2

1

Start with random weights

𝑥𝑥1

𝑥𝑥2

(learning rate 𝜂𝜂 = 0.1)

0.5
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Perceptron Learning Example

31

𝑥𝑥1

Σ 𝑓𝑓 �−1, 𝑠𝑠 < 0
1, 𝑠𝑠 ≥ 0

𝑠𝑠 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤0𝑤𝑤1 = 0.2

𝑤𝑤2 = 0.0

𝑤𝑤0 = −0.1
𝑥𝑥2

1

Consider training example 1

𝑥𝑥1

𝑥𝑥2

(learning rate 𝜂𝜂 = 0.1)

0.2𝑥𝑥1 + 0.0𝑥𝑥2 − 0.1 > 0

𝑤𝑤1 ← 𝑤𝑤1 − 𝜂𝜂𝑥𝑥1 = 0.1
𝑤𝑤2 ← 𝑤𝑤2 − 𝜂𝜂𝑥𝑥2 = −0.1
𝑤𝑤0 ← 𝑤𝑤0 − 𝜂𝜂 = −0.2

0.5

(1,1)

class -1
class 1
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Perceptron Learning Example

32

𝑥𝑥1

Σ 𝑓𝑓 �−1, 𝑠𝑠 < 0
1, 𝑠𝑠 ≥ 0

𝑠𝑠 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤0𝑤𝑤1 = 0.1

𝑤𝑤2 = −0.1

𝑤𝑤0 = −0.2
𝑥𝑥2

1

Update weights

𝑥𝑥1

𝑥𝑥2

(learning rate 𝜂𝜂 = 0.1)

2

(1,1)

class -1
class 1
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𝑥𝑥1

Σ 𝑓𝑓 �−1, 𝑠𝑠 < 0
1, 𝑠𝑠 ≥ 0

𝑠𝑠 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤0𝑤𝑤1 = 0.1

𝑤𝑤2 = −0.1

𝑤𝑤0 = −0.2
𝑥𝑥2

1

Consider training example 2

𝑥𝑥1

𝑥𝑥2

(learning rate 𝜂𝜂 = 0.1)

2

(2,1)

0.1𝑥𝑥1 − 0.1𝑥𝑥2 − 0.2 < 0

𝑤𝑤1 ← 𝑤𝑤1 + 𝜂𝜂𝑥𝑥1 = 0.3
𝑤𝑤2 ← 𝑤𝑤2 + 𝜂𝜂𝑥𝑥2 = 0.0
𝑤𝑤0 ← 𝑤𝑤0 + 𝜂𝜂𝑥𝑥1 = −0.1

class -1
class 1
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𝑥𝑥1

Σ 𝑓𝑓 �−1, 𝑠𝑠 < 0
1, 𝑠𝑠 ≥ 0

𝑠𝑠 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤0𝑤𝑤1 = 0.3

𝑤𝑤2 = 0.0

𝑤𝑤0 = −0.1
𝑥𝑥2

1

Update weights

𝑥𝑥1

𝑥𝑥2

(learning rate 𝜂𝜂 = 0.1)

(2,1)

1/3

class -1
class 1
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𝑥𝑥1

Σ 𝑓𝑓 �−1, 𝑠𝑠 < 0
1, 𝑠𝑠 ≥ 0

𝑠𝑠 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤0𝑤𝑤1 = 0.3

𝑤𝑤2 = 0.0

𝑤𝑤0 = −0.1
𝑥𝑥2

1

Further examples

𝑥𝑥1

𝑥𝑥2

(learning rate 𝜂𝜂 = 0.1)

1/3

class -1
class 1

0.3𝑥𝑥1 − 0.0𝑥𝑥2 − 0.1 > 0
3rd point: correctly classified
4th point: incorrect, update

etc.
(1.5,0.5)

4th point
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𝑥𝑥1

Σ 𝑓𝑓 �−1, 𝑠𝑠 < 0
1, 𝑠𝑠 ≥ 0

𝑠𝑠 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤0𝑤𝑤1 = ⋯

𝑤𝑤2 = ⋯

𝑤𝑤0 = ⋯
𝑥𝑥2

1

Further examples

𝑥𝑥1

𝑥𝑥2

(learning rate 𝜂𝜂 = 0.1)

class -1
class 1

Eventually, all the data will 
be correctly classified 
(provided it is linearly 

separable)
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This lecture

• Notes on linear algebra
∗ Vectors and dot products
∗ Hyperplanes and vector normals

• Perceptron
∗ Introduction to Artificial Neural Networks
∗ The perceptron model
∗ Training algorithm
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