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This lecture
• Iterative optimisation

∗ Loss functions
∗ Coordinate descent
∗ Gradient descent

• Regularisation
∗ Model complexity
∗ Constrained modelling
∗ Bias-variance trade-off
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Iterative Optimisation

A very brief summary of a few 
basic optimisation methods
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*This is the setup of what’s called frequentist supervised learning. A different 
view on parameter estimation/training will be presented later in the subject.

Supervised learning*
1. Assume a model (e.g., linear model)

∗ Denote parameters of the model as 𝜽𝜽
∗ Model predictions are 𝑓𝑓 𝒙𝒙,𝜽𝜽

2. Choose a way to measure discrepancy between predictions 
and training data
∗ E.g., sum of squared residuals 𝒚𝒚 − 𝑿𝑿𝑿𝑿 2

3. Training = parameter estimation = optimisation
�𝜽𝜽 = argmin

𝜽𝜽∈Θ
𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝜽𝜽
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Loss functions: Measuring discrepancy
• For a single training example the discrepancy 

between prediction and label is measured using a 
loss function

• Examples:

∗ squared loss 𝑙𝑙𝑠𝑠𝑠𝑠 = 𝑦𝑦 − 𝑓𝑓 𝒙𝒙,𝜽𝜽
2

∗ absolute loss 𝑙𝑙𝑎𝑎𝑎𝑎𝑠𝑠 = 𝑦𝑦 − 𝑓𝑓 𝒙𝒙,𝜽𝜽
∗ Perceptron loss (next lecture)
∗ Hinge loss (later in the subject)

5
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Solving optimisation problems
• Analytic (aka closed form) solution

∗ Known only in limited number of cases

∗ Use necessary condition: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃1

= ⋯ = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑝𝑝

= 0

• Approximate iterative solution
1. Initialisation: choose starting guess 𝜽𝜽(1), set 𝑖𝑖 = 1
2. Update: 𝜽𝜽(𝑖𝑖+1) ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆 𝜽𝜽(𝑖𝑖) , set 𝑖𝑖 ← 𝑖𝑖 + 1
3. Termination: decide whether to Stop
4. Go to Step 2
5. Stop: return �𝜽𝜽 ≈ 𝜽𝜽(𝑖𝑖)
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Finding the deepest point

7

𝜃𝜃2

𝜃𝜃1

• In this example, a model has 2 
parameters

• Each location corresponds to a 
particular combination of parameter 
values

• Depth indicates discrepancy between 
model using those values and data
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Coordinate descent
• Suppose 𝜽𝜽 = 𝜃𝜃1, … , 𝜃𝜃𝐾𝐾 ′

1. Choose 𝜽𝜽(1) and some 𝑇𝑇
2. For 𝑖𝑖 from 1 to 𝑇𝑇*

1. 𝜽𝜽(𝑖𝑖+1) ← 𝜽𝜽(𝑖𝑖)

2. For 𝑗𝑗 from 1 to 𝐾𝐾
1. Fix components of 𝜽𝜽(𝑖𝑖+1), 

expect 𝑗𝑗-th component
2. Find �𝜃𝜃𝑗𝑗

𝑖𝑖+1 that minimises 
𝐿𝐿 𝜃𝜃𝑗𝑗

𝑖𝑖+1

3. Update 𝑗𝑗-th component of 
𝜽𝜽(𝑖𝑖+1)

3. Return �𝜽𝜽 ≈ 𝜽𝜽(𝑖𝑖)

8
Wikimedia Commons. 

Author: Nicoguaro (CC4)*Other stopping criteria can be used

𝜃𝜃2

𝜃𝜃1
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Gradient

9

• Gradient (at point 𝜽𝜽) is defined as 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃1

, … , 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑝𝑝

′

computed at point 𝜽𝜽

• One can show that gradient points to the direction of 
maximal change of 𝐿𝐿(𝜽𝜽) when departing from point 𝜽𝜽

• Shorthand notation

∗ 𝛁𝛁𝐿𝐿 ≝ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃1

, … , 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑝𝑝

′
computed at point 𝜽𝜽

∗ Here 𝛁𝛁 is the nabla symbol
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Gradient descent
1. Choose 𝜽𝜽(1) and some 𝑇𝑇
2. For 𝑖𝑖 from 1 to 𝑇𝑇*

1. 𝜽𝜽(𝑖𝑖+1) = 𝜽𝜽(𝑖𝑖) − 𝜂𝜂𝛁𝛁𝐿𝐿(𝜽𝜽(𝑖𝑖))

3. Return �𝜽𝜽 ≈ 𝜽𝜽(𝑖𝑖)

• Note: 𝜂𝜂 is dynamically updated 
in each step

10

Wikimedia Commons. Authors: 
Olegalexandrov, Zerodamage*Other stopping criteria can be used

We assume 𝐿𝐿 is 
differentiable

𝜽𝜽(0)
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Regularisation

Process of introducing additional information in 
order to solve an ill-posed problem or to 

prevent overfitting (Wikipedia)
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Previously: Regularisation
• Major technique, common in Machine Learning

• Addresses one or more of the following related 
problems
∗ Avoid ill-conditioning
∗ Introduce prior knowledge
∗ Constrain modelling

• This is achieved by augmenting the objective 
function

• Not just for linear methods.

12
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Example regression problem

2 4 6 8 10
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5
10

 

X

Y

How complex a model should we use?
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Underfitting (linear regression)

2 4 6 8 10
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5
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Y

Model class Θ can be too simple to possibly fit true model.
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Overfitting (non-parametric smoothing)

2 4 6 8 10

-5
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5
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X

Y

Model class Θ can be so complex it can fit true model + noise
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Actual model (𝑥𝑥sin 𝑥𝑥)

2 4 6 8 10
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The right model class Θ will sacrifice some training error, for test error.
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How to “vary” model complexity

• Method 1: Explicit model selection

• Method 2: Regularisation

• Usually, method 1 can be viewed a special case of 
method 2

17
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1. Explicit model selection
• Try different classes of models. Example, try polynomial 

models of various degree 𝑑𝑑 (linear, quadratic, cubic, …)

• Use held out validation (cross validation) to select the 
model

1. Split training data into 𝐷𝐷𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖𝑡𝑡 and 𝐷𝐷𝑣𝑣𝑎𝑎𝑣𝑣𝑖𝑖𝑣𝑣𝑎𝑎𝑡𝑡𝑣𝑣 sets

2. For each degree 𝑑𝑑 we have model 𝑓𝑓𝑣𝑣
1. Train 𝑓𝑓𝑣𝑣 on 𝐷𝐷𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖𝑡𝑡
2. Test 𝑓𝑓𝑣𝑣 on 𝐷𝐷𝑣𝑣𝑎𝑎𝑣𝑣𝑖𝑖𝑣𝑣𝑎𝑎𝑡𝑡𝑣𝑣

3. Pick degree �̂�𝑑 that gives the best test score

4. Re-train model 𝑓𝑓 �𝑣𝑣 using all data

18
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2. Vary complexity by regularisation

• Augment the problem:
�𝜽𝜽 = argmin

𝜽𝜽∈Θ
𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝜽𝜽 + 𝜆𝜆𝑆𝑆 𝜽𝜽

• E.g., ridge regression
�𝑿𝑿 = argmin

𝑿𝑿∈𝑊𝑊
𝒚𝒚 − 𝑿𝑿𝑿𝑿 2

2 + 𝜆𝜆 𝑿𝑿 2
2

• Note that 𝑆𝑆 𝜽𝜽 does not depend on data

• Use held out validation/cross validation to choose 𝜆𝜆

19



Statistical Machine Learning (S2 2017) Deck 5

Example: polynomial regression

20

• 9th order polynomial regression
∗ model of form

𝑓𝑓 = 𝑤𝑤0 + 𝑤𝑤1 𝑥𝑥 + … + 𝑤𝑤9𝑥𝑥9

∗ regularised with 𝜆𝜆 𝑿𝑿 2
2 term

𝞴𝞴 = 0

Figures from Bishop pp7-9,150
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Regulariser as a constraint
• For illustrative purposes, consider a modified problem:

minimise 𝒚𝒚 − 𝑿𝑿𝑿𝑿 2
2 subject to 𝑿𝑿 2

2 ≤ 𝝀𝝀 for 𝜆𝜆 > 0

21

𝐰𝐰∗

Ridge regression ( 𝑿𝑿 2
2)

𝑤𝑤1

𝑤𝑤2

𝐰𝐰∗

Lasso ( 𝑿𝑿 1)

𝑤𝑤1

𝑤𝑤2

Regulariser defines
feasible region

Contour lines of
objective function

Solution to
linear regression

• Lasso (L1 regularisation) encourages solutions to sit on the axes

 Some of the weights are set to zero  Solution is sparse
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Regularised linear regression

Algorithm Minimises Regulariser Solution

Linear 
regression 𝒚𝒚 − 𝑿𝑿𝑿𝑿 2

2 None 𝐗𝐗′𝐗𝐗 −1𝐗𝐗′𝐲𝐲
(if inverse exists)

Ridge 
regression 𝒚𝒚 − 𝑿𝑿𝑿𝑿 2

2 + 𝜆𝜆 𝑿𝑿 2
2

L2 norm

𝐗𝐗′𝐗𝐗 + 𝜆𝜆𝐈𝐈 −1𝐗𝐗′𝐲𝐲

Lasso 𝒚𝒚 − 𝑿𝑿𝑿𝑿 2
2 + 𝜆𝜆 𝐰𝐰 1

L1 norm No closed-form, but 
solutions are sparse 

and suitable for 
high-dim data

22



Statistical Machine Learning (S2 2017) Deck 5

Bias-variance trade-off

Analysis of relations between 
train error, test error and 

model complexity

23
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Assessing generalisation capacity
• Supervised learning: train the model on existing data, 

then make predictions on new data
∗ Generalisation capacity of the model is an important 

consideration

• Training the model: minimisation of training error

• Generalisation capacity is captured by the test error

• Model complexity is a major factor that influences the 
ability of the model to generalise

• In this section, our aim is to explore relations between 
training error, test error and model complexity

24
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Training error
• Suppose training data is 𝐷𝐷 = 𝒙𝒙1,𝑦𝑦1 , … , 𝒙𝒙𝑡𝑡,𝑦𝑦𝑡𝑡

• Let 𝑓𝑓 𝒙𝒙 denote predicted value for 𝒙𝒙 from the 
model trained on 𝐷𝐷

• Let 𝑙𝑙 𝑦𝑦𝑖𝑖 ,𝑓𝑓 𝒙𝒙𝑖𝑖 denote loss on the 𝑖𝑖-th training 
example

• Training error: 1
𝑡𝑡
∑𝑖𝑖=1𝑡𝑡 𝑙𝑙 𝑦𝑦𝑖𝑖 ,𝑓𝑓 𝒙𝒙𝑖𝑖

25
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Training error and model complexity
• More complex model  training error goes down

• Finite number of points  usually can reduce 
training error to 0 (is it always possible?)

26

model complexity

Training 
error

𝑥𝑥

𝑦𝑦
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Test error
• Assume 𝒴𝒴 = ℎ 𝒙𝒙0 + 𝜀𝜀

∗ 𝒙𝒙0 is a fixed instance
∗ ℎ 𝒙𝒙 is an unknown true function
∗ 𝜀𝜀 is noise, 𝔼𝔼 𝜀𝜀 = 0 and 𝑉𝑉𝑑𝑑𝑉𝑉 𝜀𝜀 = 𝜎𝜎2

• Treat training data as a random variable 𝒟𝒟
∗ Draw 𝐷𝐷~𝒟𝒟, train model on 𝐷𝐷, make predictions
∗ Prediction 𝑓𝑓 𝒙𝒙0 is a random variable, despite 𝒙𝒙0fixed

• Test error for 𝒙𝒙0: 𝔼𝔼 𝑙𝑙 𝒴𝒴, 𝑓𝑓 𝒙𝒙0
∗ The expectation is taken with respect to 𝒟𝒟 and 𝜀𝜀
∗ 𝒟𝒟 and 𝜀𝜀 are assumed to be independent

27
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Bias-variance decomposition
• For the following analysis, we consider squared loss 

as an important special case

𝑙𝑙 𝒴𝒴, 𝑓𝑓 𝒙𝒙0 = 𝒴𝒴 − 𝑓𝑓 𝒙𝒙0
2

• Lemma: Bias-Variance Decomposition
𝔼𝔼 𝑙𝑙 𝒴𝒴,𝑓𝑓 𝒙𝒙0 = 𝔼𝔼 𝒴𝒴 − 𝔼𝔼 𝑓𝑓

2
+ 𝑉𝑉𝑑𝑑𝑉𝑉 𝑓𝑓 + 𝑉𝑉𝑑𝑑𝑉𝑉 𝒴𝒴

28

(bias)2 variance irreducible 
error

test error 
for 𝒙𝒙0



Statistical Machine Learning (S2 2017) Deck 5

Decomposition proof sketch
• Here (𝒙𝒙) is omitted to de-clutter notation

• 𝔼𝔼 𝒴𝒴 − 𝑓𝑓
2

= 𝔼𝔼 𝒴𝒴2 + 𝑓𝑓2 − 2𝒴𝒴𝑓𝑓

• = 𝔼𝔼 𝒴𝒴2 + 𝔼𝔼 𝑓𝑓2 − 𝔼𝔼 2𝒴𝒴𝑓𝑓

• = 𝑉𝑉𝑑𝑑𝑉𝑉 𝒴𝒴 + 𝔼𝔼 𝒴𝒴 2 + 𝑉𝑉𝑑𝑑𝑉𝑉 𝑓𝑓 + 𝔼𝔼 𝑓𝑓
2
− 2𝔼𝔼 𝒴𝒴 𝔼𝔼 𝑓𝑓

• = 𝑉𝑉𝑑𝑑𝑉𝑉 𝒴𝒴 + 𝑉𝑉𝑑𝑑𝑉𝑉 𝑓𝑓 + 𝔼𝔼 𝒴𝒴 2 − 2𝔼𝔼 𝒴𝒴 𝔼𝔼 𝑓𝑓 + 𝔼𝔼 𝑓𝑓
2

• = 𝑉𝑉𝑑𝑑𝑉𝑉 𝒴𝒴 + 𝑉𝑉𝑑𝑑𝑉𝑉 𝑓𝑓 + 𝔼𝔼 𝒴𝒴 − 𝔼𝔼 𝑓𝑓
2

29* Green slides are non-examinable
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Training data as a random variable

30

𝑦𝑦 𝑦𝑦𝑦𝑦𝐷𝐷1 𝐷𝐷2 𝐷𝐷3

𝑥𝑥 𝑥𝑥 𝑥𝑥
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Training data as a random variable

31

𝑦𝑦 𝑦𝑦𝑦𝑦𝐷𝐷1 𝐷𝐷2 𝐷𝐷3

𝑥𝑥 𝑥𝑥 𝑥𝑥
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Model complexity and variance
• simple model  low variance

• complex model  high variance

32

𝑥𝑥0

𝑦𝑦

𝑥𝑥

𝑦𝑦

𝑥𝑥0 𝑥𝑥
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Model complexity and bias
• simple model  high bias

• complex model  low bias

33

𝑦𝑦

ℎ 𝑥𝑥0

𝑦𝑦

ℎ 𝑥𝑥0

𝑥𝑥0 𝑥𝑥 𝑥𝑥0 𝑥𝑥
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Bias-variance trade-off
• simple model  high bias, low variance

• complex model  low bias, high variance

34

complex modelsimple model

(bias)2 variance

Test error



Statistical Machine Learning (S2 2017) Deck 5

Test error and training error

35

complex modelsimple model

Training 
error

Test error
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This lecture
• Iterative optimisation

∗ Loss functions
∗ Coordinate descent
∗ Gradient descent

• Regularisation
∗ Model complexity
∗ Constrained modelling
∗ Bias-variance trade-off
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