Lecture 5. Optimisation. Regularisation

COMP90051 Statistical Machine Learning

Semester 2, 2017 Lecturer: Andrey Kan

Copyright: University of Melbourne

This lecture

- Iterative optimisation
 - * Loss functions
 - * Coordinate descent
 - * Gradient descent
- Regularisation
 - * Model complexity
 - * Constrained modelling
 - Bias-variance trade-off

Iterative Optimisation

A very brief summary of a few basic optimisation methods

Supervised learning*

- 1. Assume a model (e.g., linear model)
 - * Denote parameters of the model as $oldsymbol{ heta}$
 - * Model predictions are $\hat{f}(x, \theta)$
- 2. Choose a way to measure discrepancy between predictions and training data
 - * E.g., sum of squared residuals $\|y Xw\|^2$
- 3. Training = parameter estimation = optimisation $\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmin}} L(data, \boldsymbol{\theta})$

*This is the setup of what's called *frequentist supervised learning*. A different view on parameter estimation/training will be presented later in the subject.

Δ

Loss functions: Measuring discrepancy

- For a single training example the discrepancy between prediction and label is measured using a <u>loss function</u>
- Examples:

* squared loss
$$l_{sq} = (y - \hat{f}(\boldsymbol{x}, \boldsymbol{\theta}))^2$$

- * absolute loss $l_{abs} = |y \hat{f}(x, \theta)|$
- Perceptron loss (next lecture)
- * Hinge loss (later in the subject)

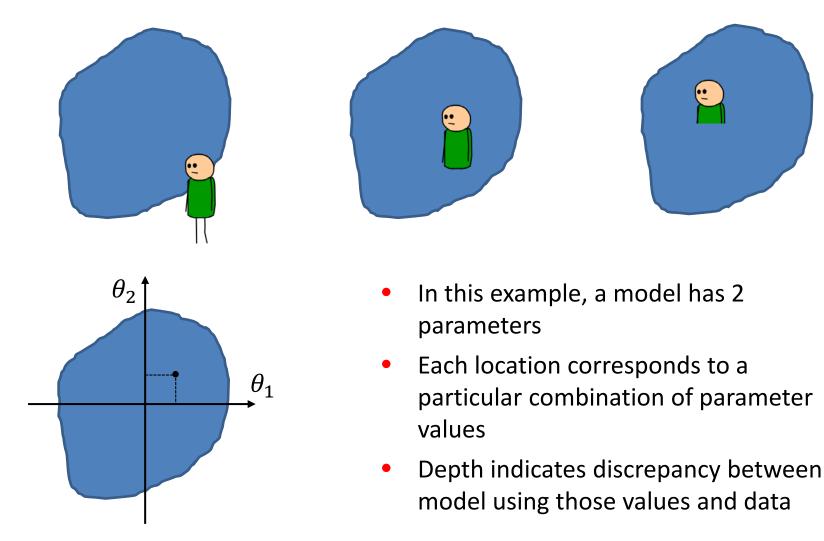
Solving optimisation problems

- Analytic (aka closed form) solution
 - * Known only in limited number of cases

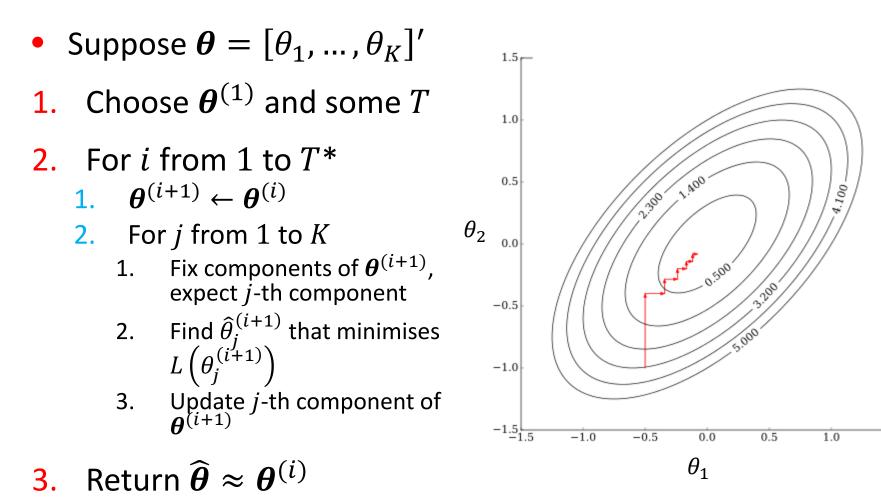
* Use necessary condition:
$$\frac{\partial L}{\partial \theta_1} = \cdots = \frac{\partial L}{\partial \theta_p} = 0$$

- Approximate iterative solution
 - 1. Initialisation: choose starting guess $\theta^{(1)}$, set i = 1
 - 2. <u>Update</u>: $\theta^{(i+1)} \leftarrow SomeRule[\theta^{(i)}]$, set $i \leftarrow i+1$
 - 3. <u>Termination</u>: decide whether to Stop
 - 4. Go to Step 2
 - 5. Stop: return $\widehat{\boldsymbol{\theta}} \approx \boldsymbol{\theta}^{(i)}$

Finding the deepest point



Coordinate descent



Wikimedia Commons. Author: Nicoguaro (CC4)

8

1.5

Gradient

- Gradient (at point $\boldsymbol{\theta}$) is defined as $\left[\frac{\partial L}{\partial \theta_1}, \dots, \frac{\partial L}{\partial \theta_p}\right]'$ computed at point $\boldsymbol{\theta}$
- One can show that gradient points to the direction of maximal change of $L(\theta)$ when departing from point θ
- Shorthand notation

*
$$\nabla L \stackrel{\text{def}}{=} \left[\frac{\partial L}{\partial \theta_1}, \dots, \frac{\partial L}{\partial \theta_p} \right]'$$
 computed at point $\boldsymbol{\theta}$

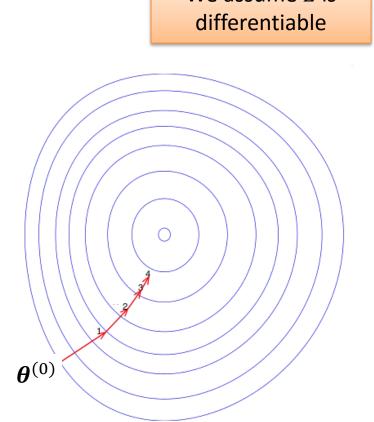
* Here ∇ is the nabla symbol

Harps, p. 984

Deck 5

Gradient descent

- 1. Choose $\theta^{(1)}$ and some T
- **2.** For *i* from 1 to T^* 1. $\theta^{(i+1)} = \theta^{(i)} - \eta \nabla L(\theta^{(i)})$
- **3**. Return $\widehat{\boldsymbol{\theta}} \approx \boldsymbol{\theta}^{(i)}$
- Note: η is dynamically updated in each step



We assume L is

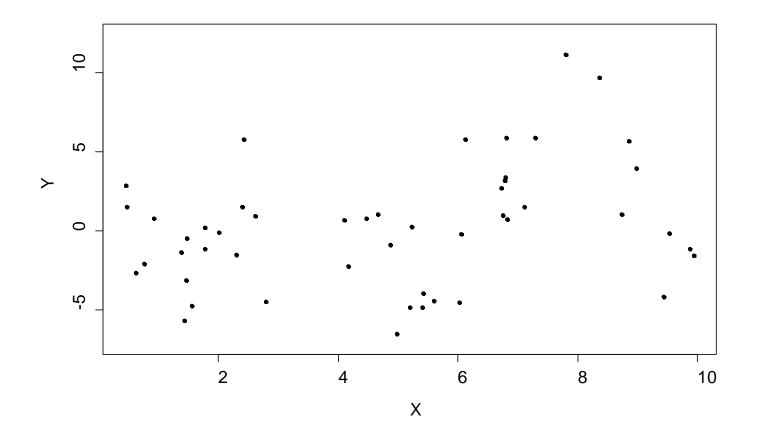
Regularisation

Process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting (*Wikipedia*)

Previously: Regularisation

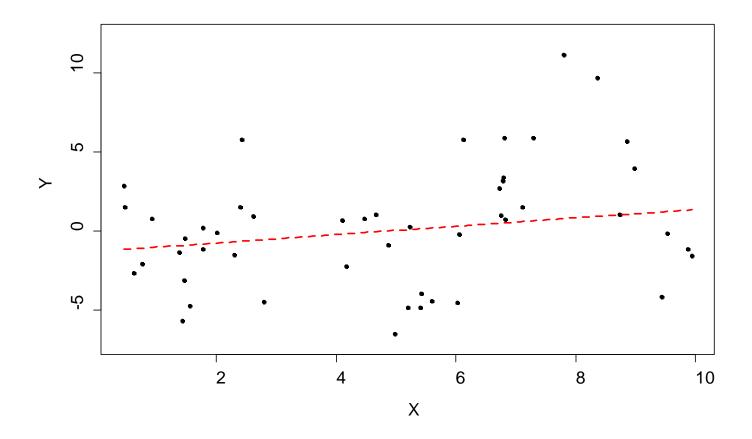
- Major technique, common in Machine Learning
- Addresses one or more of the following related problems
 - * Avoid ill-conditioning
 - Introduce prior knowledge
 - Constrain modelling
- This is achieved by augmenting the objective function
- <u>Not just for linear methods</u>.

Example regression problem



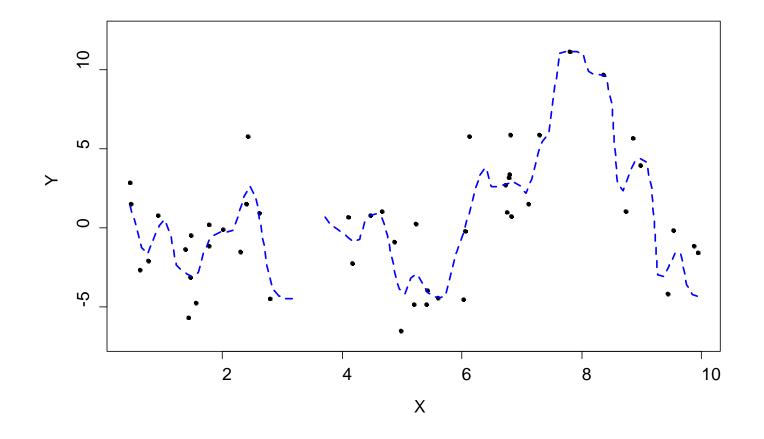
How complex a model should we use?

Underfitting (linear regression)

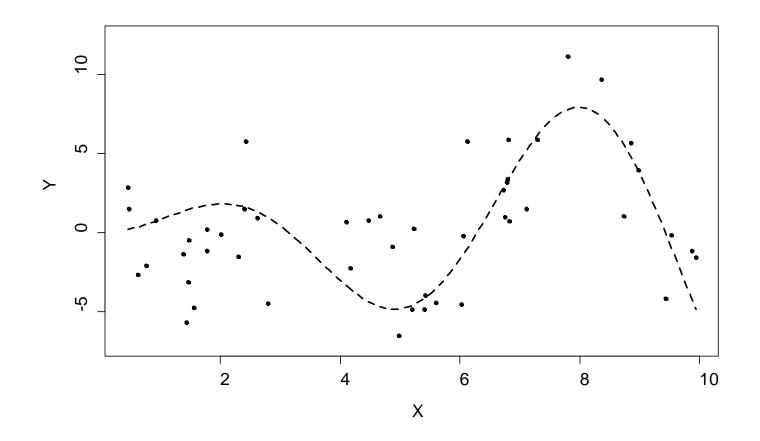


Model class Θ can be **too simple** to possibly fit true model.

Overfitting (non-parametric smoothing)



Model class Θ can be **so complex** it can fit true model + noise



The **right model class** Θ will sacrifice some training error, for test error.

How to "vary" model complexity

- Method 1: Explicit model selection
- Method 2: Regularisation
- Usually, method 1 can be viewed a special case of method 2

1. Explicit model selection

- Try different classes of models. Example, try polynomial models of various degree d (linear, quadratic, cubic, ...)
- Use <u>held out validation</u> (cross validation) to select the model
- **1.** Split training data into D_{train} and $D_{validate}$ sets
- **2.** For each degree d we have model f_d
 - 1. Train f_d on D_{train}
 - 2. Test f_d on $D_{validate}$
- **3**. Pick degree \hat{d} that gives the best test score
- 4. Re-train model $f_{\hat{d}}$ using all data

2. Vary complexity by regularisation

• Augment the problem: $\widehat{\boldsymbol{\rho}}$ - argmin(I)(data)

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmin}} \left(L(data, \boldsymbol{\theta}) + \frac{\lambda R(\boldsymbol{\theta})}{\theta \in \Theta} \right)$$

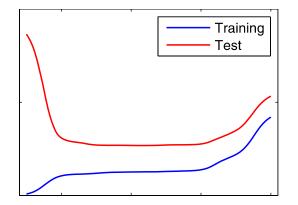
- E.g., ridge regression $\widehat{w} = \underset{w \in W}{\operatorname{argmin}} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2}$
- Note that $R(\theta)$ does not depend on data
- Use held out validation/cross validation to choose λ

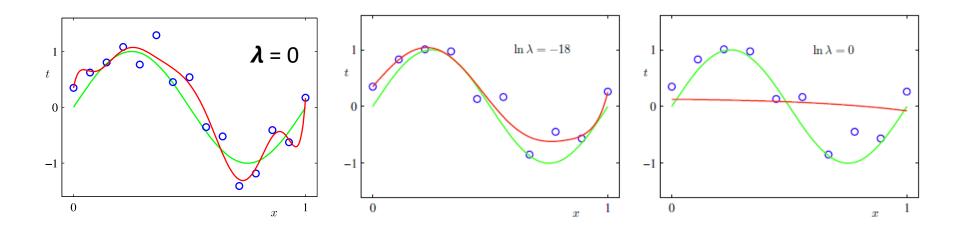
Example: polynomial regression

- 9th order polynomial regression
 - * model of form

$$\hat{f} = w_0 + w_1 x + \dots + w_9 x^9$$

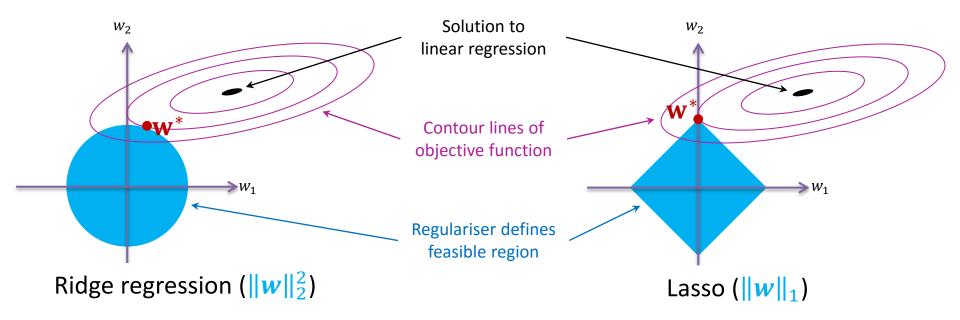
* regularised with $\lambda \| w \|_2^2$ term





Regulariser as a constraint

• For illustrative purposes, consider a modified problem: minimise $\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$ subject to $\|\mathbf{w}\|_2^2 \leq \lambda$ for $\lambda > 0$



• Lasso (L1 regularisation) encourages solutions to sit on the axes

 \rightarrow Some of the weights are set to zero \rightarrow Solution is sparse

Regularised linear regression

Algorithm	Minimises	Regulariser	Solution
Linear regression	$\ y - Xw\ _{2}^{2}$	None	(X'X) ⁻¹ X'y (if inverse exists)
Ridge regression	$\ \boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\ _2^2 + \lambda \ \boldsymbol{w}\ _2^2$	L2 norm	$(\mathbf{X}'\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}'\mathbf{y}$
Lasso	$\ \boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\ _2^2 + \lambda \ \boldsymbol{w}\ _1$	L1 norm	No closed-form, but solutions are sparse and suitable for high-dim data

Bias-variance trade-off

Analysis of relations between train error, test error and model complexity

Assessing generalisation capacity

- Supervised learning: train the model on existing data, then make predictions on <u>new data</u>
 - Generalisation capacity of the model is an important consideration
- Training the model: minimisation of <u>training error</u>
- Generalisation capacity is captured by the <u>test error</u>
- <u>Model complexity</u> is a major factor that influences the ability of the model to generalise
- In this section, our aim is to explore relations between training error, test error and model complexity

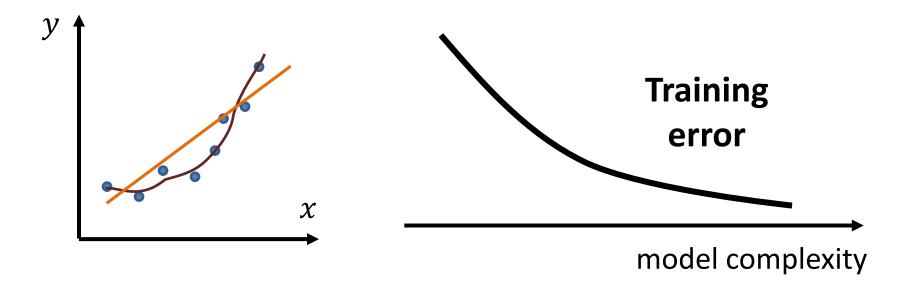
Training error

- Suppose training data is $D = \{(x_1, y_1), \dots, (x_n, y_n)\}$
- Let $l(y_i, \hat{f}(x_i))$ denote loss on the *i*-th training example

• Training error:
$$\frac{1}{n} \sum_{i=1}^{n} l(y_i, \hat{f}(\boldsymbol{x}_i))$$

Training error and model complexity

- More complex model \rightarrow training error goes down
- Finite number of points → usually can reduce training error to 0 (is it always possible?)



Test error

- Assume $\mathcal{Y} = h(\mathbf{x}_0) + \varepsilon$
 - * x_0 is a fixed instance
 - * h(x) is an unknown true function
 - * ε is noise, $\mathbb{E}[\varepsilon] = 0$ and $Var[\varepsilon] = \sigma^2$
- Treat training data as a random variable ${\cal D}$
 - * Draw $D \sim D$, train model on D, make predictions
 - * Prediction $\hat{f}(x_0)$ is a random variable, despite x_0 fixed
- Test error for \boldsymbol{x}_0 : $\mathbb{E}\left[l\left(\mathcal{Y}, \hat{f}(\boldsymbol{x}_0)\right)\right]$
 - * The expectation is taken with respect to ${\cal D}$ and ${\cal E}$
 - * \mathcal{D} and ε are assumed to be independent

Bias-variance decomposition

• For the following analysis, we consider squared loss as an important special case

$$l\left(\mathcal{Y},\hat{f}(\boldsymbol{x}_{0})\right) = \left(\mathcal{Y}-\hat{f}(\boldsymbol{x}_{0})\right)^{2}$$

• Lemma: Bias-Variance Decomposition $\mathbb{E}\left[l\left(\mathcal{Y}, \hat{f}(\boldsymbol{x}_{0})\right)\right] = \left(\mathbb{E}[\mathcal{Y}] - \mathbb{E}[\hat{f}]\right)^{2} + Var[\hat{f}] + Var[\mathcal{Y}]$ test error

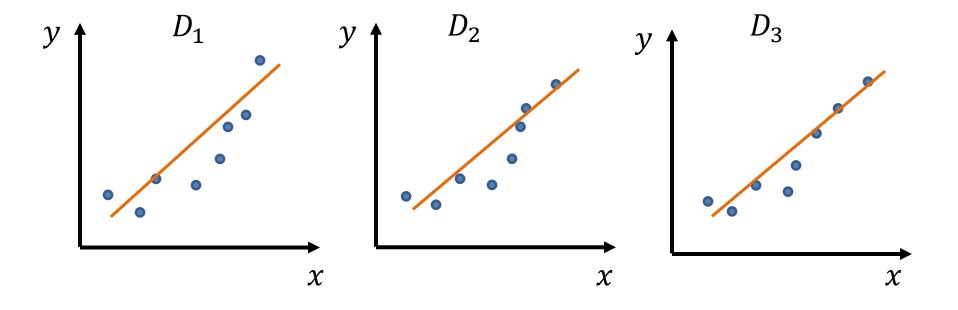
test error
for x_0 (bias)²varianceirreducible
error

Decomposition proof sketch

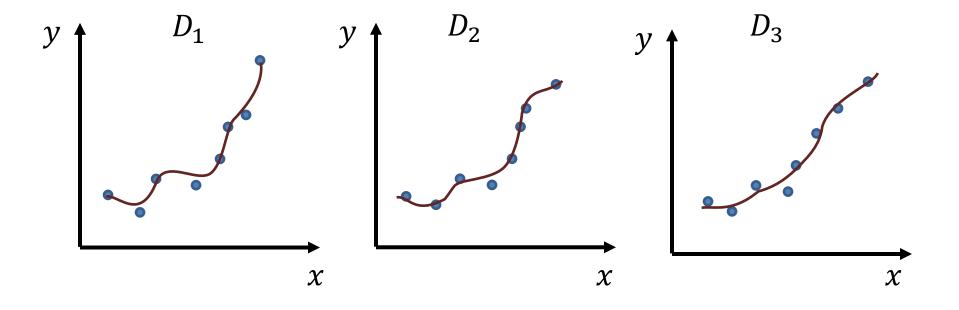
- Here (x) is omitted to de-clutter notation
- $\mathbb{E}\left[\left(\mathcal{Y}-\hat{f}\right)^2\right] = \mathbb{E}\left[\mathcal{Y}^2+\hat{f}^2-2\mathcal{Y}\hat{f}\right]$
- = $\mathbb{E}[\mathcal{Y}^2] + \mathbb{E}[\hat{f}^2] \mathbb{E}[2\mathcal{Y}\hat{f}]$
- = $Var[\mathcal{Y}] + \mathbb{E}[\mathcal{Y}]^2 + Var[\hat{f}] + \mathbb{E}[\hat{f}]^2 2\mathbb{E}[\mathcal{Y}]\mathbb{E}[\hat{f}]$
- = $Var[\mathcal{Y}] + Var[\hat{f}] + (\mathbb{E}[\mathcal{Y}]^2 2\mathbb{E}[\mathcal{Y}]\mathbb{E}[\hat{f}] + \mathbb{E}[\hat{f}]^2)$
- = $Var[\mathcal{Y}] + Var[\hat{f}] + (\mathbb{E}[\mathcal{Y}] \mathbb{E}[\hat{f}])^2$

* Green slides are non-examinable

Training data as a random variable

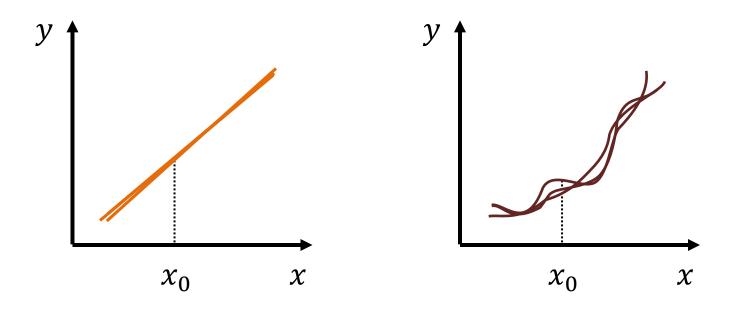


Training data as a random variable



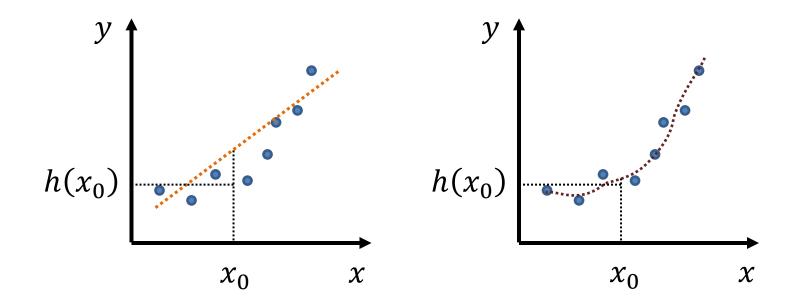
Model complexity and variance

- simple model → low variance
- complex model → high variance



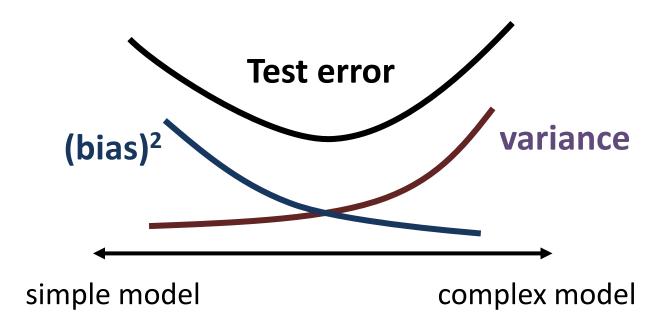
Model complexity and bias

- simple model → high bias
- complex model → low bias

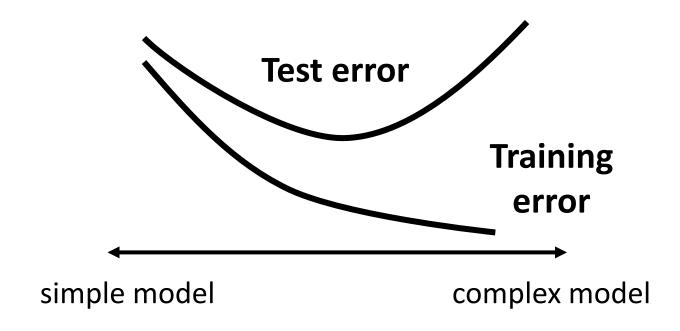


Bias-variance trade-off

- simple model → high bias, low variance
- complex model → low bias, high variance



Test error and training error



This lecture

- Iterative optimisation
 - * Loss functions
 - * Coordinate descent
 - * Gradient descent
- Regularisation
 - * Model complexity
 - Constrained modelling
 - Bias-variance trade-off