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This lecture

* Linear regression
* Worked example and the model
* Regression as a probabilistic model

e Regularisation
* |rrelevant features and an ill-posed problem
* Regulariser as a prior
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Linear Regression Model

A simple model that tends to require
less data and be easier to interpret.

It offers mathematical convenience at
the expense of flexibility.
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Example: Predict humidity from temperature

Temperature
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In regression, the task is to predict numeric
response (aka dependent variable) from features
(aka predictors or independent variables)

Assume a linear relation: H = a + bT

(H — humidity; T — temperature; a, b — parameters)
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Example: Problem statement

e The modelis
H=a+ bT

e Fitting the model
= finding “best”
a, b values for
data at hand

* Popular criterion:
minimise the sum
of squared errors
(aka residual sum
of squares)
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Example: Finding parameter values

To find a, b that minimise L = 2}21(Hl- —(a+»b Tl-))2

set derivatives to zero:

5_L _ 9 10 (Hi—a—bT,) =0 Basic calculus:
oa (=1 L L/ e \Write derivative
. ~ 1 <10 e Setto zero
if we know b, then @ = — i—1(H;—=bT;) « Solve for model
oL 10
%2—2 _1Tl-(Hi—a—bTi)=O
i=

. N 1 10
if we know a, then b = —— ;= T;(H; — a)

i=1"i
Coordinate descent: guess a, solve for b; solve for a; repeat
gives linear regression a = 25.3,b = 0.77 (requires many
iterations!)
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Example: Analytic solution

e Can we do better? We have two equations and two
unknowns a, b

* Rewrite as a system of linear equations

( 10 }ngi>(a)_( %ngi )
2T X TA)\D 121 TiH;

* Analytic solution: a = 25.3,b = 0.77

* (Cansolve using numpy. linalg.solve or
equivalent)
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Linear regression model

e Assume a linear relationship between response y € R

and an instance with features x4, ..., X, € R
m

y = Wy +inWi

i=1
Here wy, ..., w,; € R denote weights (model parameters)

e Trick: add a dummy feature x, = 1 and use vector

notation
m
y = z X;W; = X'wW
i=0

A lowercase symbol in bold face indicates a vector; x’ denotes transpose
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Checkpoint

e Consider a dataset {(x{, V1), ..., (x,,, ¥,,)} and some
parameter vector w (same dimensionality as x;). Which of the

following statements is necessarily true

Q Each y; can be expressed as (x;)'w

} Given w, it is always possible to compute the sum of squared errors

" for this dataset
{r Linear regression model for this data has n parameters ? 7
D7

&2
3

10
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Data is noisy!

Example: predict mark for Statistical Machine Learning (SML)
from mark for Knowledge Technologies (KT)
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! I
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* synthetic data :)
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Regression as a probabilistic model

o

e Assume a probabilistic model:
Y=xw+¢
* Here Y and € are random
variables

+ Variable € encodes noise

e

T e

* Next, assume normally
distributed noise: e~N(0,52)

X

- — — s O — =

thisis a
squared

* Recall that N (x|u, 02) = —— exp (— — )/ error!

e Therefore

1
p(y|x,w,0°%) =
V2mo?

12
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Parametric probabilistic model

o

e

e Using simplified notation, our model is

1 — x'w)?
p(y|x) = eXp<—(y xw))

2102 20°

* Note that parameters are now w, g2

——— - — — — = a8 — =

* Given observed data {(x4,y1), ..., (X, ¥,)}, we want to find
parameter values that “best” explain the data

e Maximum likelihood estimation: choose parameter values that
maximise the probability of observed data

13
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Maximum likelihood estimation

Assuming independence of data points, the probability of data is

n
DYy oo Yul Xy s X)) = Hp(yilxi)
=1

202

;N2
Recall that p(y;|x;) = 2;02 exp (_ (yi—(x)'w) )

“Log trick”: Instead of maximising this quantity, maximise the
logarithm

n n
1
z logp(yilx;) = _Z_ZZ(yi — (x)'W)?|+ K
. O- .
i1 i=1 the sum of
d
here K doesn’t depend on w Sjrurg:;

Under this model, maximising log-likelihood as a function of w is
equivalent to minimising the sum of squared errors

14
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Method of least squares

e Training data: {(x1, 1), ..., (X, ¥»,)}. Note bold face in x;

e For convenience, place instances in rows (so attributes go in columns),
representing training data asann X (m + 1) matrix X, and n X 1 vector y

e The model assumes y =~ Xw )
Basic calculus:

e To find w, minimise the sum of squared errors * Write derivative
* Setto zero

- 2
n e Solve for model
L= E ' Vi — E XUW]
=1 -
J=0

e Setting derivative to zero and solving for w yields
w=XX)"Xy

* This is a system of equations called the normal equations
* This system is defined only if the inverse exists

An UPPERCASE symbol in bold face indicates a matrix; X’ denotes transpose; X~ denotes matrix inverse 15
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Heads up!

e This subject covers a large variety of computational
methods

e But there will be several recurring topics, common
threads run throughout the entire course

* These topics reflect fundamental aspects of machine
learning

* Basis expansion, representation
e Optimisation, loss functions

e Regularisation, overfitting

16
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Regularisation

Process of introducing additional information in
order to solve an ill-posed problem or to
prevent overfitting (Wikipedia)

17
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Regularisation

* Major technique, common in Machine Learning

* Addresses one or more of the following related problems
** Avoid ill-conditioning
* |Introduce prior knowledge
** Constrain modelling

e This is achieved by augmenting the objective function

e In this lecture: we cover the first two aspects. We will
cover more of regularisation throughout the subject

18
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Example 1: Irrelevant features

e Linear model on three features, first two same
* X is matrix a for n = 4 instances (rows)

3 3 7
+ First two columns of X identical 6 6 9
* Feature 2 is irrelevant (or feature 1) 21 21 79
* Model: y = wyx1 + wox, + waxs + wy 34 34 2

My, isn’t w .
mportant? - © Effect of perturbations

on model predictions?
* Add A to wy
* Subtract A from w,
...identical predictions
— ...no interpretability

[N
o
1

o O A N O N BN O ®
de——— de———

KN
o

19
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Problems with irrelevant features

* In our example, suppose Wy, W{, W,, W3] is the “best
solution”

 But for arbitrary 6 solution [Wy, W, + 6,W, — §,W3]’
will lead to the same predictions and to the same
sum of squared errors

 The solution is not unique
* One problem is lack of interpretability

A more serious problem is that the finding the best
parameters becomes an ill-posed problem

20
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Irrelevant (co-linear) features in general
e X-treme case: features complete clones

* For linear models, more generally
+* Feature X.j is irrelevant if
* X.j is a linear combination of other columns

X] =z alX-l
l#]j

... for some constants «;
* Even near-irrelevance can be problematic

* Not just a pathological x-treme; easy to happen!

X .j denotes the j-th column of X 21
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Example 2: Lack of data

* Model is more complex Ay
than data

* Extreme example:

* Model has two
parameters (slope and
intercept)

* Only one data point

 Underdetermined system

22
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Ill-posed problems

* In both examples, finding the best
parameters becomes an ill-posed
problem

* This means that the problem solution

is not defined

* In our case wy and w, cannot be uniquely

identified

e Remember the normal equations
solutionw = (X'X)"1X'y

e With irrelevant features, X' X has no

inverse

* The system of linear equations has

more unknowns than equations

sum of squared
510 errors

Wy

e

5 0 F

convex, but not
strictly convex

23
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Side note: L1 and L2 norms

 Throughout the course we will often encounter norms that are functions
R"™ — R of a particular form

* Intuitively, norms measure lengths of vectors in some sense

* More specifically, we will often use the L2 norm (aka Euclidean distance)

lall = llall, = Ja% ot a2

 And also the L1 norm (aka absolute norm or Manhattan distance)
lall, = lai| + -+ |a,

* For example, the sum of squared errors is a squared norm
2

m
n
L= (yi= ) Xyw | =lly—Xwl’
=1 =0

24



Statistical Machine Learning (52 2017)

Deck 3

Re-conditioning the problem

sum of squared
errors

Regularisation: introduce an additional
condition into the system 0907

The originazl problem is to minimise ot
||y _ XW”Z 3e+(d

The regularised problem is to minimise 2

ly — Xwll3 + Allwl3 for 1> 0 il
6o | Wy
The solution is now oo
w
w=XX+1D)"'X"y &. '
This formation is called ridge regression strictly convex

* Turns the ridge into a peak

25
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Regulariser as a prior

e Without regularisation model parameters are found
based entirely on the information contained in the
training set X

e Regularisation essentially means introducing additional
information

 Recall our probabilistic model Y = x'w + ¢
* Here Y and € are random variables, where € denotes noise

 Now suppose that w is also a random variable (denoted
as W) with a normal prior distribution

W~N(0,2%)

26
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Regulariser as a prior

 Now suppose that w is also a random variable (denoted

as W) with a normal prior distribution
W~N(0,1%)

* Prior = our initial expectations before seeing data

* In the above prior, we expect small weights and that no
one feature dominates
* |s this always appropriate? Consider data centring and scaling

 We could encode much more elaborate problem
knowledge

27
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Computing posterior using Bayes rule

<>

 The prior is then used to compute the posterior

likelihood

p(y|X,w)p(w)

p(yIX) marginal
likelihood

* Instead of maximum likelihood (MLE), take maximum a posteriori
estimate (MAP)

p(w|X,y) =

* Apply log trick, so that
log(posterior) = log(likelihood) + log(prior) —/Lo.g-ém'a@

this term doesn’t

e Arrive at the problem of minimising
affect optimisation

ly — Xwll3 + Allwll3

28
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This lecture

* Linear regression
* Worked example and the model
* Regression as a probabilistic model

e Regularisation
* |rrelevant features and an ill-posed problem
* Regulariser as a prior

29
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