Lecture 3. Linear Regression

COMP90051 Statistical Machine Learning

Semester 2, 2017
Lecturer: Andrey Kan

Weeks 2 to 8 inclusive

- Lecturer: Andrey Kan
* MS: Moscow, PhD: Melbourne
* Email: andrey.kan@unimelb.edu.au
* Office hour: after Thursday's lecture
- Past: software engineer
* Optimising compilers

- Present: postdoc
* Medical image analysis
* Computational biology

DISCOVERIES FOR HUMANITY

- Future: applied scientist
* Machine Learning
* Going to Seattle at the end of September!
amazon

This lecture

- Linear regression
* Worked example and the model
* Regression as a probabilistic model
- Regularisation
* Irrelevant features and an ill-posed problem
* Regulariser as a prior

Linear Regression Model

A simple model that tends to require
less data and be easier to interpret.
It offers mathematical convenience at the expense of flexibility.

Example: Predict humidity from temperature

Temperature	Humidity
TraInING DATA	
85	85
80	90
83	86
70	96
68	80
65	70
64	65
72	95
69	70
75	80
73	
TEST DATA	
75	70

In regression, the task is to predict numeric response (aka dependent variable) from features (aka predictors or independent variables)
Assume a linear relation: $H=a+b T$
(H - humidity; T - temperature; a, b - parameters)

Example: Problem statement

- The model is

$$
H=a+b T
$$

- Fitting the model = finding "best" a, b values for data at hand
- Popular criterion: minimise the sum of squared errors (aka residual sum of squares)

Example: Finding parameter values

To find a, b that minimise $L=\sum_{i=1}^{10}\left(H_{i}-\left(a+b T_{i}\right)\right)^{2}$ set derivatives to zero:

$$
\frac{\partial L}{\partial a}=-2 \sum_{i=1}^{10}\left(H_{i}-a-b T_{i}\right)=0
$$

if we know b, then $\hat{a}=\frac{1}{10} \sum_{i=1}^{10}\left(H_{i}-b T_{i}\right)$

Basic calculus:

- Write derivative
- Set to zero
- Solve for model

$$
\frac{\partial L}{\partial b}=-2 \sum_{i=1}^{10} T_{i}\left(H_{i}-a-b T_{i}\right)=0
$$

if we know a, then $\hat{b}=\frac{1}{\sum_{i=1}^{10} T_{i}^{2}} \sum_{i=1}^{10} T_{i}\left(H_{i}-a\right)$
Coordinate descent: guess a, solve for b; solve for a; repeat gives linear regression $a=25.3, b=0.77$ (requires many iterations!)

Example: Analytic solution

- Can we do better? We have two equations and two unknowns a, b
- Rewrite as a system of linear equations

$$
\left(\begin{array}{cc}
10 & \sum_{i=1}^{10} T_{i} \\
\sum_{i=1}^{10} T_{i} & \sum_{i=1}^{10} T_{i}^{2}
\end{array}\right)\binom{a}{b}=\binom{\sum_{i=1}^{10} H_{i}}{\sum_{i=1}^{10} T_{i} H_{i}}
$$

- Analytic solution: $a=25.3, b=0.77$
- (Can solve using numpy. linalg. solve or equivalent)

Linear regression model

- Assume a linear relationship between response $y \in \mathbb{R}$ and an instance with features $x_{1}, \ldots, x_{m} \in \mathbb{R}$

$$
y \approx w_{0}+\sum_{i=1}^{m} x_{i} w_{i}
$$

Here $w_{1}, \ldots, w_{m} \in \mathbb{R}$ denote weights (model parameters)

- Trick: add a dummy feature $x_{0}=1$ and use vector notation

$$
y \approx \sum_{i=0}^{m} x_{i} w_{i}=x^{\prime} \boldsymbol{w}
$$

Checkpoint

- Consider a dataset $\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right)\right\}$ and some parameter vector \boldsymbol{w} (same dimensionality as $\boldsymbol{x}_{\boldsymbol{i}}$). Which of the following statements is necessarily true

Each y_{i} can be expressed as $\left(\boldsymbol{x}_{i}\right)^{\prime} \boldsymbol{w}$
Given \boldsymbol{w}, it is always possible to compute the sum of squared errors for this dataset

Linear regression model for this data has n parameters

Data is noisy!

Example: predict mark for Statistical Machine Learning (SML) from mark for Knowledge Technologies (KT)

* synthetic data :)

Regression as a probabilistic model

- Assume a probabilistic model: $\mathcal{Y}=\boldsymbol{x}^{\prime} \boldsymbol{w}+\varepsilon$
* Here \mathcal{Y} and ε are random variables
* Variable ε encodes noise
- Next, assume normally distributed noise: $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- Recall that $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \equiv \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$
- Therefore

$$
p\left(y \mid \boldsymbol{x}, \boldsymbol{w}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y-\boldsymbol{x}^{\prime} \boldsymbol{w}\right)^{2}}{2 \sigma^{2}}\right)
$$

Parametric probabilistic model

- Using simplified notation, our model is

$$
p(y \mid \boldsymbol{x})=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y-\boldsymbol{x}^{\prime} \boldsymbol{w}\right)^{2}}{2 \sigma^{2}}\right)
$$

- Note that parameters are now $\boldsymbol{w}, \sigma^{2}$
- Given observed data $\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right)\right\}$, we want to find parameter values that "best" explain the data
- Maximum likelihood estimation: choose parameter values that maximise the probability of observed data

Maximum likelihood estimation

- Assuming independence of data points, the probability of data is

$$
p\left(y_{1}, \ldots, y_{n} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)=\prod_{i=1}^{n} p\left(y_{i} \mid \boldsymbol{x}_{\boldsymbol{i}}\right)
$$

- Recall that $p\left(y_{i} \mid x_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-\left(x_{i}\right)^{\prime} \boldsymbol{w}\right)^{2}}{2 \sigma^{2}}\right)$
- "Log trick": Instead of maximising this quantity, maximise the logarithm

$$
\sum_{i=1}^{n} \log p\left(y_{i} \mid \boldsymbol{x}_{\boldsymbol{i}}\right)=-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\left(\boldsymbol{x}_{i}\right)^{\prime} \boldsymbol{w}\right)^{2}+K+\begin{gathered}
\text { the sum of } \\
\text { squared } \\
\text { errors! }
\end{gathered}
$$

- Under this model, maximising log-likelihood as a function of \boldsymbol{w} is equivalent to minimising the sum of squared errors

Method of least squares

- Training data: $\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right)\right\}$. Note bold face in \boldsymbol{x}_{i}
- For convenience, place instances in rows (so attributes go in columns), representing training data as an $n \times(m+1)$ matrix \boldsymbol{X}, and $n \times 1$ vector \boldsymbol{y}
- The model assumes $\boldsymbol{y} \approx \boldsymbol{X} \boldsymbol{w}$
- To find \boldsymbol{w}, minimise the sum of squared errors

$$
L=\sum_{i=1}^{n}\left(y_{i}-\sum_{j=0}^{m} X_{i j} w_{j}\right)^{2}
$$

Basic calculus:

- Write derivative
- Set to zero
- Solve for model
- Setting derivative to zero and solving for \boldsymbol{w} yields

$$
\widehat{\boldsymbol{w}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}
$$

* This is a system of equations called the normal equations
* This system is defined only if the inverse exists

Heads up!

- This subject covers a large variety of computational methods
- But there will be several recurring topics, common threads run throughout the entire course
- These topics reflect fundamental aspects of machine learning
- Basis expansion, representation
- Optimisation, loss functions
- Regularisation, overfitting

Regularisation

Process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting (Wikipedia)

Regularisation

- Major technique, common in Machine Learning
- Addresses one or more of the following related problems
* Avoid ill-conditioning
* Introduce prior knowledge
* Constrain modelling
- This is achieved by augmenting the objective function
- In this lecture: we cover the first two aspects. We will cover more of regularisation throughout the subject

Example 1: Irrelevant features

- Linear model on three features, first two same
* \boldsymbol{X} is matrix a for $n=4$ instances (rows)
* First two columns of \boldsymbol{X} identical
* Feature 2 is irrelevant (or feature 1)

3	3	7
6	6	9
21	21	79
34	34	2

- Effect of perturbations on model predictions?
* Add Δ to w_{1}
* Subtract Δ from w_{2}
...identical predictions
...no interpretability

Problems with irrelevant features

- In our example, suppose $\left[\widehat{w}_{0}, \widehat{w}_{1}, \widehat{w}_{2}, \widehat{w}_{3}\right]$ is the "best solution"
- But for arbitrary δ solution $\left[\widehat{w}_{0}, \widehat{w}_{1}+\delta, \widehat{w}_{2}-\delta, \widehat{w}_{3}\right]^{\prime}$ will lead to the same predictions and to the same sum of squared errors
- The solution is not unique
- One problem is lack of interpretability
- A more serious problem is that the finding the best parameters becomes an ill-posed problem

Irrelevant (co-linear) features in general

- X-treme case: features complete clones
- For linear models, more generally
* Feature $\boldsymbol{X}_{. j}$ is irrelevant if
* $\boldsymbol{X}_{\cdot j}$ is a linear combination of other columns

$$
\boldsymbol{X}_{\cdot j}=\sum_{l \neq j} \alpha_{l} \boldsymbol{X}_{\cdot l}
$$

... for some constants α_{l}

- Even near-irrelevance can be problematic
- Not just a pathological x-treme; easy to happen!

Example 2: Lack of data

- Model is more complex than data
- Extreme example:
* Model has two parameters (slope and intercept)
* Only one data point
- Underdetermined system

III-posed problems

- In both examples, finding the best parameters becomes an ill-posed problem
- This means that the problem solution is not defined
* In our case w_{1} and w_{2} cannot be uniquely identified
- Remember the normal equations solution $\widehat{\boldsymbol{w}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}$
- With irrelevant features, $\boldsymbol{X}^{\prime} \boldsymbol{X}$ has no inverse
- The system of linear equations has more unknowns than equations
convex, but not strictly convex

Side note: L1 and L2 norms

- Throughout the course we will often encounter norms that are functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$ of a particular form
* Intuitively, norms measure lengths of vectors in some sense
- More specifically, we will often use the L2 norm (aka Euclidean distance)

$$
\|\boldsymbol{a}\|=\|\boldsymbol{a}\|_{2} \equiv \sqrt{a_{1}^{2}+\cdots+a_{n}^{2}}
$$

- And also the L1 norm ($a k a$ absolute norm or Manhattan distance)

$$
\|\boldsymbol{a}\|_{1} \equiv\left|a_{1}\right|+\cdots+\left|a_{n}\right|
$$

- For example, the sum of squared errors is a squared norm

$$
L=\sum_{i=1}^{n}\left(y_{i}-\sum_{j=0}^{m} X_{i j} w_{j}\right)^{2}=\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|^{2}
$$

Re-conditioning the problem

- Regularisation: introduce an additional condition into the system
- The original problem is to minimise $\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|_{2}^{2}$
- The regularised problem is to minimise

$$
\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} \text { for } \lambda>0
$$

- The solution is now

$$
\widehat{\boldsymbol{w}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}+\lambda I\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}
$$

- This formation is called ridge regression

strictly convex
* Turns the ridge into a peak

Regulariser as a prior

- Without regularisation model parameters are found based entirely on the information contained in the training set \boldsymbol{X}
- Regularisation essentially means introducing additional information
- Recall our probabilistic model $\mathcal{Y}=\boldsymbol{x}^{\prime} \boldsymbol{w}+\varepsilon$
* Here \mathcal{Y} and ε are random variables, where ε denotes noise
- Now suppose that \boldsymbol{w} is also a random variable (denoted as \mathcal{W}) with a normal prior distribution

$$
\mathcal{W} \sim \mathcal{N}\left(0, \lambda^{2}\right)
$$

Regulariser as a prior

- Now suppose that \boldsymbol{w} is also a random variable (denoted as \mathcal{W}) with a normal prior distribution

$$
\mathcal{W} \sim \mathcal{N}\left(0, \lambda^{2}\right)
$$

- Prior = our initial expectations before seeing data
- In the above prior, we expect small weights and that no one feature dominates
* Is this always appropriate? Consider data centring and scaling
- We could encode much more elaborate problem knowledge

Computing posterior using Bayes rule

- The prior is then used to compute the posterior

- Instead of maximum likelihood (MLE), take maximum a posteriori estimate (MAP)
- Apply log trick, so that $\log ($ posterior $)=\log ($ likelihood $)+\log ($ prior $)-\log ($ marg $)$
- Arrive at the problem of minimising

$$
\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2}
$$

This lecture

- Linear regression
* Worked example and the model
* Regression as a probabilistic model
- Regularisation
* Irrelevant features and an ill-posed problem
* Regulariser as a prior

