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Statistical	Schools	of	Thought
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Based	on	Berkeley	CS	294-34	tutorial	slides	by	Ariel	Kleiner

Remainder of lecture is to provide intuition into how
algorithms in this subject come about and inter-relate
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Frequentist	Statistics

• Abstract	problem
* Given:	X1,	X2,	…,	Xn drawn	i.i.d.	from	some	distribution
* Want	to:	identify	unknown	distribution

• Parametric	approach	(“parameter	estimation”)
* Class	of	models {𝑝# 𝑥 : 𝜃 ∈ Θ} indexed	by	parameters Θ
(could	be	a	real	number,	or	vector,	or	….)

* Select	𝜃*	(𝑥-, … , 𝑥0) some	function	(or	statistic)	of	data

• Examples
* Given	n coin	flips,	determine	probability	of	landing	heads
* Building	a	classifier	is	a	very	related	problem
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Hat	means	estimate	
or	estimator
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How	do	Frequentists	Evaluate	Estimators?

• Bias:	𝐵# 𝜃3 = 𝐸# 𝜃3 𝑋-, … , 𝑋0 − 𝜃

• Variance:	𝑉𝑎𝑟# 𝜃3 = 𝐸# (𝜃3 − 𝐸#[𝜃3])=
* Efficiency:	estimate	has	minimal	variance

• Square	loss	vs	bias-variance	
𝐸# 𝜃 − 𝜃3 = = [𝐵(𝜃)]=+𝑉𝑎𝑟#(𝜃3)

• Consistency:	𝜃3 𝑋-, … , 𝑋0 converges	to	𝜃 as	n gets	
big

… more	on	this	later	in	the	subject	…
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Subscript	 q
means	data	really	
comes	from	pq

𝜃* still	function	of	
data
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Is	this	“Just	Theoretical”TM?

• Recall	Lecture	1			à

• Those	evaluation
metrics?	They’re
just	estimators	of	a
performance
parameter

• Example:	error

• Bias,	Variance,	etc.	indicate	quality	of	approximation
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Evaluation	(Supervised	Learners)

• How	you	measure	quality	depends	on	your	problem!

• Typical	process

* Pick	an	evaluation	metric	comparing	label	vs	prediction

* Procure	an	independent,	labelled	test	set

* “Average”	the	evaluation	metric	over	the	test	set

• Example	evaluation	metrics

* Accuracy,	Contingency	table,	Precision-Recall,	ROC	curves

• When	data	poor,	cross-validate
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Maximum-Likelihood	Estimation

• A	general	principle	for	designing	estimators

• Involves	optimisation

• 𝜃3 𝑥-, … , 𝑥0 = argmax
#∈D

∏ 𝑝#(𝑥F)0
FG-

* Question:	Why	a	product?
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Fischer
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Example	I:	Normal

• Know	data	comes	from	Normal	distribution	with	
variance	1	but	unknown	mean;	find	mean

• MLE	for	mean

* 𝑝# 𝑥 = -
=H� exp − -

=
𝑥 − 𝜃 =

* Maximising	likelihood	yields	𝜃* = -
0
∑ 𝑥F0
FG-

• Exercise:	derive	MLE	for	variance 𝜎= based	on	
𝑝# 𝑥 = -

=HNO� exp − -
=NO

𝑥 − 𝜇 = with	𝜃 = (𝜇, 𝜎=)
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Example	II:	Bernoulli

• Know	data	comes	from	Bernoulli	distribution	with	
unknown	parameter	(e.g.,	biased	coin);	find	mean

• MLE	for	mean

* 𝑝# 𝑥 = Q𝜃, 						if	𝑥 = 1
1 − 𝜃,	if	𝑥 = 0 			= 			𝜃

V 1 − 𝜃
-WV

(note:	𝑝# 𝑥 =	0	for	all	other	𝑥)

* Maximising	likelihood	yields	𝜃* = -
0
∑ 𝑥F0
FG-
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Corrected	typo	
after	lecture,	
27/7/17
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MLE	‘algorithm’

1. given	data	𝑥-, … , 𝑥0 define probability	distribution,	
𝑝#,	assumed	to	have	generated	the	data

2. express	likelihood	of	data,	∏ 𝑝#(𝑥F)0
FG-

(usually	its	logarithm… why?)

3. optimise	to	find	best (most	likely)	parameters	𝜃3	
1. take	partial	derivatives	of	log	likelihood	wrt 𝜃
2. set	to	0	and	solve	

(failing	that,	use	iterative	gradient	method)
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Bayesian	Statistics

• Probabilities	correspond	to	beliefs

• Parameters
* Modeled	as	r.v.’s having	distributions
* Prior	belief	in	𝜃 encoded	by	prior	distribution	P(𝜃)
* Write	likelihood	of	data	P(𝑋) as	conditional	P(X|𝜃)
* Rather	than	point	estimate	𝜃*, Bayesians	update	belief	P(𝜃)
with	observed	data	to	P(𝜃|𝑋) the	posterior	distribution

10

Laplace
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More	Detail	(Probabilistic	Inference)

• Bayesian	machine	learning
* Start	with	prior	P(𝜃) and	likelihood	P(𝑋|𝜃)
* Observe	data	𝑋 = 𝑥
* Update	prior	to	posterior	P(𝜃|𝑋 = 𝑥)

• We’ll	later	cover	tools	to	get	the	posterior
* Bayes	Theorem:	reverses	order	of	conditioning

𝑃 𝜃 𝑋 = 𝑥 =
𝑃 𝑋 = 𝑥 𝜃 𝑃(𝜃)

𝑃(𝑋 = 𝑥)
* Marginalisation:	eliminates	unwanted	variables

P 𝑋 = 𝑥 =\ 𝑃(𝑋 = 𝑥, 𝜃 = 𝑡)
�

^
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Bayes
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Example

• We	model	𝑋|𝜃 as	𝑁(𝜃, 1) with	prior	N(0,1)
• Suppose	we	observe	X=1,	then	update	posterior

𝑃 𝜃 𝑋 = 1 = ` 𝑋 = 1 𝜃 `(#)
`(aG-)

∝ 𝑃 𝑋 = 1 𝜃 𝑃 𝜃

= -
=H� 𝑒𝑥𝑝 − (-W#)O

=
-
=H� 𝑒𝑥𝑝 − #O

=

∝ 𝑁 0.5,0.5
NB:	allowed	to	push	constants out	front	and	“ignore”	as	
these	get	taken	care	of	by	normalisation
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How	Bayesians	Make	Point	Estimates

• They	don’t,	unless	forced	at	gunpoint!
* The	posterior	carries	full	information,	why	discard	it?

• But,	there	are	common	approaches
* Posterior	mean			𝐸#|a 𝜃 = ∫𝜃𝑃 𝜃 𝑋 𝑑𝜃�

�

* Posterior	mode			argmax
#

𝑃(𝜃|𝑋) (max	a	posteriori or	MAP)
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𝑃(𝜃|𝑋)

𝜃𝜃MAP
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MLE	in	Bayesian	context

• MLE	formulation:	find	parameters	that	best	fit	data
𝜃3 = argmax#	𝑃 𝑋 = 𝑥 𝜃

• Consider	the	MAP under	a	Bayesian	formulation
		𝜃3 = 𝑃 𝜃 𝑋 = 𝑥

= argmax#
𝑃 𝑋 = 𝑥 𝜃 𝑃 𝜃

𝑃 𝑋 = 𝑥
= argmax#	𝑃 𝑋 = 𝑥 𝜃 𝑃 𝜃

• Difference	is	prior 𝑃 𝜃 ;	assumed	uniform for	MLE
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Parametric	vs Non-Parametric	Models

Parametric Non-Parametric

Determined	by	fixed,	finite	
number	of	parameters

Number of	parameters	grows	
with	data,	potentially	infinite

Limited	flexibility More	flexible

Efficient statistically	and	
computationally Less	efficient
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Examples	to	come! There	are	non/parametric	models
in	both	the	frequentist	and	Bayesian	schools.
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Generative	vs.	Discriminative	Models

• X’s	are	instances,	Y’s	are	labels	(supervised	setting!)
* Given:	i.i.d.	data	(X1,	Y1),…	,(Xn,	Yn)
* Find	model	that	can	predict	Y of	new	X

• Generative	approach
* Model	full	joint	P(X,	Y)

• Discriminative	approach
* Model	conditional	P(Y|X)	only

• Both	have	pro’s	and	con’s
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Examples	to	come! There	are	generative/discriminative
models	in	both	the	frequentist	and	Bayesian	schools.
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Summary

• Philosophies:	frequentist	vs.	Bayesian

• Principles	behind	many	learners:
* MLE
* Probabilistic	inference,	MAP

• Discriminative	vs.	Generative	models
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