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Why	Learn	Learning?
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Motivation

• “We	are	drowning	in	information,
but	we	are	starved	for	knowledge”

- John	Naisbitt,	Megatrends

• Data	=	raw	information

• Knowledge	=	patterns	or	models	behind	the	data
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Solution:	Machine	Learning
• Hypothesis:	pre-existing	data	repositories	contain	a	
lot	of	potentially	valuable	knowledge

• Mission	of	learning:	find	it

• Definition	of	learning:

(semi-)automatic	extraction	of	valid,	novel,	useful	and	
comprehensible	knowledge	– in	the	form	of	rules,	
regularities,	patterns,	constraints	or	models	– from	arbitrary	
sets	of	data
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Applications	of	ML	are	Deep	and	Prevalent
• Online	ad	selection	and	placement

• Risk	management	in	finance,	insurance,	security

• High-frequency	trading

• Medical	diagnosis

• Mining	and	natural	resources

• Malware	analysis

• Drug	discovery

• Search	engines
…
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Draws	on	Many	Disciplines

• Artificial	Intelligence
• Statistics
• Continuous	optimisation
• Databases
• Information	Retrieval
• Communications/information	theory
• Signal	Processing
• Computer	Science	Theory
• Philosophy
• Psychology	and	neurobiology

…
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Job$
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Many	companies	across	all	
industries	hire	ML	experts:

Data	Scientist
Analytics	Expert
Business	Analyst
Statistician
Software	Engineer
Researcher
…
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About	this	Subject
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(refer	to	subject	outline	on	github for	
more	information	– linked	from	LMS)



COMP90051	Machine	Learning	(S2	2017) L1

Vital	Statistics
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Lecturers:
Weeks	1;
9-12

Weeks	2-8

Trevor	Cohn	(DMD8.,	tcohn@unimelb.edu.au)
A/Prof	&	Future	Fellow,	Computing	&	Information	Systems
Statistical	Machine	Learning,	Natural	Language	Processing

Andrey Kan (andrey.kan@unimelb.edu.au)
Research	Fellow,	Walter	and	Eliza Hall	Institute
ML,	Computational	immunology,	Medical	image	analysis

Tutors: Yasmeen	George	(ygeorge@student.unimelb.edu.au)
Nitika Mathur (nmathur@student.unimelb.edu.au)
Yuan	Li	(yuanl4@student.unimelb.edu.au)

Contact: Weekly	you	should	attend	2x	Lectures,	1x	Workshop

Office	Hours Thursdays	1-2pm,	7.03	DMD	Building

Website: https://trevorcohn.github.io/comp90051-2017/
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About	Me	(Trevor)
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• PhD	2007	– UMelbourne

• 10	years	abroad	UK
* Edinburgh	University,	in	Language	group
* Sheffield	University,	in	Language	&	Machine	learning	groups

• Expertise:	Basic	research	in	machine	learning;	Bayesian	
inference;	graphical	models;	deep	learning;	
applications	to	structured	problems	in	text	
(translation,	sequence	tagging,	structured	parsing,	
modelling	time	series)
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Subject	Content

• The	subject	will	cover	topics	from

Foundations	of	statistical	learning,	linear	models,	non-linear	
bases,	kernel	approaches,	neural	networks,	Bayesian	
learning,	probabilistic	graphical	models	(Bayes	Nets,	Markov	
Random	Fields),	cluster	analysis,	dimensionality	reduction,	
regularisation	and	model	selection

• We	will	gain	hands-on	experience	with	all	of	this	via	a	
range	of	toolkits,	workshop	pracs,	and	projects
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Subject	Objectives

• Develop	an	appreciation	for	the	role	of	statistical	
machine	learning,	both	in	terms	of	foundations	and	
applications

• Gain	an	understanding	of	a	representative	selection	
of	ML	techniques

• Be	able	to	design,	implement	and	evaluate	ML	
systems

• Become	a	discerning	ML	consumer
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Textbooks

• Primarily	references	to
* Bishop	(2007)	Pattern	Recognition	and	
Machine	Learning

• Other	good	general	references:
* Murphy	(2012)	Machine	Learning:	A	
Probabilistic	Perspective	[read	free	ebook
using	‘ebrary’	at	http://bit.ly/29SHAQS]

* Hastie,	Tibshirani,	Friedman	(2001)	The	
Elements	of	Statistical	Learning:	Data	Mining,	
Inference	and	Prediction [free	at
http://www-stat.stanford.edu/~tibs/ElemStatLearn]
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Textbooks

• References	for	PGM	component
* Koller,	Friedman	(2009)	Probabilistic	Graphical	Models:	
Principles	and	Techniques

14



COMP90051	Machine	Learning	(S2	2017) L1

Assumed	Knowledge
(Week	2	Workshop	revises	COMP90049)

• Programming
* Required:	proficiency	at	programming,	ideally	in	python
* Ideal:	exposure	to	scientific	libraries	numpy,	scipy,	
matplotlib etc.	(similar	in	functionality	to	matlab &	aspects	
of	R.)

• Maths
* Familiarity	with	formal	notation
* Familiarity	with	probability	(Bayes	rule,	marginalisation)
* Exposure	to	optimisation	(gradient	descent)

• ML:	decision	trees,	naïve	Bayes,	kNN,	kMeans

15
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Assessment

• Assessment	components
* Two	projects	– one	released	early	(w3-4),	one	late	(w7-8);	
will	have	~3	weeks	to	complete
• First	project	fairly	structured	(20%)
• Second	project	includes	competition	component	(30%)

* Final	Exam	

• Breakdown
* 50%	Exam
* 50%	Project	work

• 50%	Hurdle	applies	to	both	exam and	ongoing	
assessment
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Machine	Learning	Basics
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Terminology

• Input	to	a	machine	learning	system	can	consist	of

* Instance:	measurements	about	individual	entities/objects
a	loan	application

* Attribute	(aka	Feature,	explanatory	var.):	component	of	the	
instances
the	applicant’s	salary,	number	of	dependents,	etc.

* Label	(aka	Response,	dependent	var.):	an	outcome	that	is	
categorical,		numeric,	etc.
forfeit	vs.	paid	off

* Examples:	instance	coupled	with	label
<(100k,	3),	“forfeit”>

* Models:	discovered	relationship	between	attributes	and/or	label
18
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Supervised	vs Unsupervised	Learning
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Data Model	used	for

Supervised	
learning Labelled Predict	labels	on	new	

instances

Unsupervised	
learning Unlabelled

Cluster related	instances;	
Project	to	fewer	
dimensions;	Understand	
attribute	relationships
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Architecture	of	a	Supervised	Learner
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Test	data

Train	data Learner

Model

Evaluation

Examples

Instances

Labels

Labels
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Evaluation	(Supervised	Learners)

• How	you	measure	quality	depends	on	your	problem!

• Typical	process
* Pick	an	evaluation	metric	comparing	label	vs	prediction
* Procure	an	independent,	labelled	test	set
* “Average”	the	evaluation	metric	over	the	test	set

• Example	evaluation	metrics
* Accuracy,	Contingency	table,	Precision-Recall,	ROC	curves

• When	data	poor,	cross-validate
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Data	is	noisy	(almost	always)
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• Example:	
* given	mark	for	Knowledge	
Technologies	(KT)

* predict	mark	for	Machine	
Learning	(ML)

KT	mark

M
L	m

ar
k

*	synthetic	data	:)

Training	
data*
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Types	of	models
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𝑦- = 𝑓 𝑥

KT	mark	was	95,	ML	
mark	is	predicted	to	

be	95

𝑃 𝑦 𝑥

KT	mark	was	95,	ML	
mark	is	likely	to	be	in	

(92,	97)

𝑃(𝑥, 𝑦)

probability	of	having	
(𝐾𝑇 = 𝑥,𝑀𝐿 = 𝑦)

𝑥
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Probability	Theory

24

Brief	refresher
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Basics	of	Probability	Theory

• A	probability	space:
* Set	W of	possible	
outcomes

* Set	F of	events
(subsets	of	outcomes)

* Probability	measure
P:	Fà R

• Example:	a	die	roll
* {1,	2,	3,	4,	5,	6}

* {	j,	{1},	…,	{6},	{1,2},	…,					
{5,6},	…,	{1,2,3,4,5,6}	}

* P(j)=0,		P({1})=1/6,	
P({1,2})=1/3,	…

25
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Axioms	of	Probability

1. 𝑃(𝑓) ≥ 0 for	every	event	f in	F

2. 𝑃 ⋃ 𝑓�8 = ∑ 𝑃(𝑓)�
8 for	all	collections*	of	pairwise	

disjoint	events

3. 𝑃 Ω = 1

26

*	We	won’t	delve	further	into	advanced	probability	theory,	which	starts	with	measure
theory.	But	to	be	precise,	additivity	is	over	collections	of	countably-many	events.
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Random	Variables	(r.v.’s)

• A	random	variable	X is	a	
numeric	function	of	
outcome	𝑋(𝜔) ∈ 𝑹

• 𝑃 𝑋 ∈ 𝐴 denotes	the	
probability	of	the	
outcome	being	such	that	
X falls	in	the	range	A

• Example:	X winnings	on	
$5	bet	on	even	die	roll
* Xmaps	1,3,5	to	-5
Xmaps	2,4,6	to	5

* P(X=5)	=	P(X=-5)	=	½

27



COMP90051	Machine	Learning	(S2	2017) L1

Discrete	vs.	Continuous	Distributions

• Discrete	distributions
* Govern	r.v.	taking	discrete	
values

* Described	by	probability	
mass	function	p(x)	which	is	
P(X=x)

* 𝑃 𝑋 ≤ 𝑥 = ∑ 𝑝(𝑎)D
EFGH

* Examples:	Bernoulli,	
Binomial,	Multinomial,	
Poisson

• Continuous	distributions
* Govern	real-valued	r.v.

* Cannot	talk	about	PMF	but	
rather	probability	density	
function	p(x)

* 𝑃 𝑋 ≤ 𝑥 = ∫ 𝑝 𝑎 𝑑𝑎D
GH

* Examples:	Uniform,	
Normal,	Laplace,	Gamma,	
Beta,	Dirichlet

28
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Expectation

• Expectation	E[X]	is	the	r.v.	X’s	“average”	value
* Discrete:	𝐸 𝑋 = ∑ 𝑥	𝑃(𝑋 = 𝑥)�

D

* Continuous:	𝐸 𝑋 = ∫ 𝑥	𝑝 𝑥 	𝑑𝑥D

• Properties
* Linear:	𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌
* Monotone:	𝑋 ≥ 𝑌	 ⇒ 	𝐸 𝑋 ≥ 𝐸 𝑌

• Variance:	𝑉𝑎𝑟 𝑋 = 𝐸[ 𝑋 − 𝐸 𝑋 T]
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Independence	and	Conditioning

• X,	Y are	independent if
* 𝑃 𝑋 ∈ 𝐴, 𝑌 ∈ 𝐵 =
𝑃 𝑋 ∈ 𝐴 𝑃(𝑌 ∈ 𝐵)

* Similarly	for	densities:	
𝑝W,X 𝑥, 𝑦 = 𝑝W(𝑥)𝑝X(𝑦)

* Intuitively:	knowing	value	of	
Y reveals	nothing	about	X

* Algebraically:	the	joint	on	X,Y
factorises!

• Conditional	probability

* 𝑃 𝐴 𝐵 = Y(Z∩\)
Y(\)

	

* Similarly	for	densities	
𝑝 𝑦 𝑥 = ](D,^)

](D)

* Intuitively:	probability	event	
A will	occur	given	we	know	
event	B has	occurred

* X,Y	independent	equiv to	
𝑃 𝑌 = 𝑦 𝑋 = 𝑥 = 𝑃(𝑌 = 𝑦)

30
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Inverting	Conditioning:	Bayes’	Theorem

• In	terms	of	events	A,	B
* 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐵 𝐴 𝑃 𝐴

* 𝑃 𝐴 𝐵 = Y 𝐵 𝐴 Y(Z)
Y(\)

• Simple	rule	that	lets	us	swap	conditioning	order

• Bayesian	statistical	inference	makes	heavy	use
* Marginals: probabilities	of	individual	variables
* Marginalisation:	summing	away	all	but	r.v.’s of	interest

31

Bayes
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Summary

• Why	study	machine	learning?

• Machine	learning	basics

• Review	of	probability	theory
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