
School of Computing and Information Systems
The University of Melbourne

COMP90042
WEB SEARCH AND TEXT ANALYSIS (Semester 1, 2019)

Workshop exercises: Week 2

Discussion

1. Give some examples of text processing applications that you use on a daily basis.

2. What is tokenisation and why is it important?

(a) What are stemming and lemmatisation, and how are they different? Give
examples from the WSTA N1 preprocessing iPython notebook.

3. Compare using a term–document matrix vs. an inverted index for resolving a
ranked query efficiently.

4. Using the TF-IDF vector space model, using raw term frequency tfd,t, log N
dft

as the
inverse document frequency formulation, find the ranking for the query apple
ibm, based on calculated over the following collection. You should use cosine
similarity, but for this question, we will skip the document normalisation step
(for time reasons.)

apple ibm lemon sun
D1 4 0 1 1
D2 5 0 5 0
D3 2 5 0 0
D4 1 0 1 7
D5 0 1 3 0

5. Recall the Okapi BM25 term weighting formula:

wt = log
N − ft + 0.5

ft + 0.5
× (k1 + 1)fd,t

k1((1− b) + b Ld

Lavg
) + fd,t

× (k3 + 1)fq,t
k3 + fq,t

where ft is the document frequency of term t, fd,t is the term frequency of term
t in document d and fq,t is the term frequency of term t in query q. k1, k3 and b
are parameters with 0 ≤ k1 < ∞, 0 ≤ k3 < ∞ and 0 ≤ b ≤ 1. Ld is the length of
document d and Lavg is the average document length in the collection.
What are its parameters, and what do they signify? How do the components
relate to TF (term frequency) and inverse document frequency (IDF)?

Programming

1. Make sure that you have a Python environment where you can run the given
iPython notebooks. In particular, ensure that the numpy, sklearn and nltk
packages are installed (i.e. you can import them).

2. Adapt the WSTA N1 preprocessing iPython notebook into a program which
tokenises a input file based on the five–step model given in the lectures.

1



3. Issue some queries using the small IR engine given in the iPython notebook
WSTA N2 information retrieval. Read (some of) the documents that are re-
turned: confirm that the keyword(s) is/are present, and judge whether you think
these documents are relevant to your query.

2



Catch-up

• Revise the following terms, as they are used in a text processing context: “cor-
pus”; “document”; “term”; “token”.

• Revise “stop words”, and why they are often removed from a text in a text pro-
cessing/information retrieval context. Use the Web to find a list of stop words for
English — are there any words in the list that you might consider not to be a stop
word? Are there any words that you consider to be stop words that are missing
from the list?

• Recall the most common regular expression operators; practice writing some reg-
ular expressions to solve common text processing problems.

• Remind yourself of the difference between the various evaulation metrics dis-
cussed in the lectures this week (accuracy, precision, recall, f-score). Re-read the
(supervised) machine learning pipeline.

• What is an information retrieval engine?

• What does it mean for a document to be relevant to a query?

• What is a vector space model? How can we find similarity in a vector space?

• (Re-)familiarise yourself with Python, if you haven’t used it recently. In particular,
focus on string and array processing, including regular expressions. Also revise
functions and mapping mathematical formulae to Python syntax (including the
numpy package).

• Familiarise yourself with the Natural Language Toolkit (NLTK). You might like
to use the e-book http://nltk.org/book as a resource; it also covers some of
the basics of Python, if you’ve never used the language before.

Get ahead

• (Extension) Identify some tokenisation issues in a language (other than English)
of your choice. How much alteration would need to be made to the tokenisation
strategy from the lectures to account for these issues?

• What effect do the various preprocessing regimes have on the efficiency (time)
and effectiveness (relevant results) of querying with the system (note: not build-
ing the index)? In particular, consider:

1. Stemming
2. Stopping
3. Tokenisation (e.g. of non-alphabetic tokens)

3

http://nltk.org/book

