
School of Computing and Information Systems
The University of Melbourne

COMP90042
WEB SEARCH AND TEXT ANALYSIS (Semester 1, 2019)

Sample solutions for discussion exercises: Week 9

Discussion

1. What are the assumptions that go into a Hidden Markov Model? What is the
time complexity of the Viterbi algorithm? Is this practical?

• Markov assumption: the likelihood of transitioning into a given state de-
pends only on the current state, and not the previous state(s) (or output(s))
• Output independence assumption: the likelihood of a state producing a cer-

tain word (as output) does not depend on the preceding (or following) state(s)
(or output(s)).
• The time complexity of the Viterbi algorithm, for an HMM with T possible

states, and a sentence of length W , is O(T 2W ). In POS tagging, there might
typically be approximately 100 possible tags (states), and a typical sentence
might have 10 or so tokens, so ... yes, it is practical (unless we need to tag
really, really, quickly, e.g. tweets as they are posted).

(a) How can an HMM be used for POS tagging a text? For the purposes of POS
tagging:
• Tokens (possibly ignoring punctuation) correspond to outputs, and POS

tags correspond to states of the HMM.
• We will build a model based around sentences in a tagged corpus. We

could instead use a document–based model; in which case, the model
will probably discover that the initial distribution of states is very simi-
lar to the transition from end–of–sentence punctuation (.?! etc.), which
probably represents a needless complication.

i. How can the initial state probabilities π be estimated?
• Record the distribution of tags for the first token of each sentence in a

tagged corpus.
ii. How can the transition probabilities A be estimated?
• For each tag, record the distribution of tags of the immediately fol-

lowing token in the tagged corpus. (We might need to introduce an
end–of–sentence dummy for the probabilities to add up correctly.)

iii. How can the emission probabilities B be estimated?
• For each tag, record the distribution of corresponding tokens in the

tagged corpus.

(b) Estimate π, A and B for POS tagging, based on the following tagged corpus:

1. silver-JJ wheels-NNS turn-VBP
2. wheels-NNS turn-VBP right-JJ
3. right-JJ wheels-NNS turn-VBP

1



• For π, there are three sentences: two begin with JJ and one with NNS.
Consequently:

π[JJ,NNS, V BP ] = [
2

3
,
1

3
, 0]

• For A, we need to observe the distribution for each tag. Even with such a
small collection, this is somewhat tedious:
– For JJ, two instances are immediately followed by NNS and one in-

stance occurs at the end of the sentence.
– For NNS, all three instance are followed by VBP.
– For VBP, it is followed by JJ once, and the end of the sentence twice.

• If we don’t use an explicit end–of–sentence marker, we end up with the
(somewhat ill-formed) A on the left; if we include it, we end up with the
A on the right (note that EOS doesn’t require it’s own transition probabil-
ities):

A JJ NNS VBP A JJ NNS VBP EOS
(from) JJ 0 1 0 JJ 0 2

3 0 1
3

NNS 0 0 1 NNS 0 0 1 0
VBP 1 0 0 VBP 1

3 0 0 2
3

• For B, we can simply read off the corresponding words for each tag in the
corpus:
– For JJ, there is one instance of silver and two of right.
– For NNS, there are three instances of wheels.
– For VBP, there are three instances of turn.

• Consequently:

B right silver turn wheels
(from) JJ 2

3
1
3 0 0

NNS 0 0 0 1
VBP 0 0 1 0

2. Consider using the following Hidden Markov Model to tag the sentence silver
wheels turn:
π[JJ,NNS,VBP] = [0.3, 0.4, 0.3]
A JJ NNS VBP
JJ 0.4 0.5 0.1

NNS 0.1 0.4 0.5
VBP 0.4 0.5 0.1

B silver wheels turn
JJ 0.8 0.1 0.1

NNS 0.3 0.4 0.3
VBP 0.1 0.3 0.6

(a) Visualise the HMM as a graph.
(b) Use the Viterbi algorithm to find the most likely tag for this sequence.

• The most likely tag sequence can be read right-to-left, based upon the
maximum probability we’ve observed: in this case, 0.0144 when turn is a
VBP; this value is derived from the NNS→VBP transition, so we can infer
that wheels is an NNS; that in turn comes from the JJ→NNS transition, so
silver is a JJ.

2



α 1:silver 2:wheels 3:turn
JJ: JJ π[JJ]B[JJ, silver]

0.3× 0.8 = 0.24
NNS: NNS π[NNS]B[NNS, silver]

0.4× 0.3 = 0.12
VBP: VBP π[VBP]B[VBP, silver]

0.3× 0.1 = 0.03

α 1:silver 2:wheels 3:turn
JJ: 0.24 JJ→ JJ A[JJ,JJ]B[JJ,wheels]

0.24 ×0.4× 0.1 = 0.0096
NNS→ JJ A[NNS,JJ]B[JJ,wheels]
0.12 ×0.1× 0.1 = 0.0012
VBP→ JJ A[VBP,JJ]B[JJ,wheels]
0.03 ×0.4× 0.1 = 0.0012

NNS: 0.12 JJ→ NNS A[JJ,NNS]B[NNS,wheels]
0.24 ×0.5× 0.4 = 0.048
NNS→ NNS A[NNS,NNS]B[NNS,wheels]
0.12 ×0.4× 0.4 = 0.0192
VBP→ NNS A[VBP,NNS]B[NNS,wheels]
0.03 ×0.5× 0.4 = 0.006

VBP: 0.03 JJ→ VBP A[JJ,VBP]B[VBP,wheels]
0.24 ×0.1× 0.3 = 0.0072
NNS→ VBP A[NNS,VBP]B[VBP,wheels]
0.12 ×0.5× 0.3 = 0.018
VBP→ VBP A[VBP,VBP]B[VBP,wheels]
0.03 ×0.1× 0.3 = 0.0009

α 1:silver 2:wheels 3:turn
JJ: 0.24 0.0096 JJ→ JJ A[JJ,JJ]B[JJ, turn]

JJ→ JJ 0.0096 ×0.4× 0.1 = 0.000384
NNS→ JJ A[NNS,JJ]B[JJ, turn]
0.048 ×0.1× 0.1 = 0.00048
VBP→ JJ A[VBP,JJ]B[JJ, turn]
0.018 ×0.4× 0.1 = 0.00072

NNS: 0.12 0.048 JJ→ NNS A[JJ,NNS]B[NNS, turn]
JJ→ NNS 0.0096 ×0.5× 0.3 = 0.00144

NNS→ NNS A[NNS,NNS]B[NNS, turn]
0.048 ×0.4× 0.3 = 0.00576
VBP→ NNS A[VBP,NNS]B[NNS, turn]
0.018 ×0.5× 0.3 = 0.0027

VBP: 0.03 0.018 JJ→ VBP A[JJ,VBP]B[VBP, turn]
NNS→ VBP 0.0096 ×0.1× 0.6 = 0.000576

NNS→ VBP A[NNS,VBP]B[VBP, turn]
0.048 ×0.5× 0.6 = 0.0144
VBP→ VBP A[VBP,VBP]B[VBP, turn]
0.018 ×0.1× 0.6 = 0.00108

3



3. What are regular grammar and regular language? How are they different?

• A language is a set of acceptable strings and a grammar is a generative de-
scription of a language.
• Regular language is a formal language that can be expressed using a regular

expression.
• Regular grammar is a formal grammar defined by a set of productions rules

in the form of A→ xB, A→ x and A→ ε, where A and B are non-terminals, x
is a terminal and ε is the empty string.
• A language is regular if and only if it can be generated by a regular grammar.
• For example: A simple regular grammar

– Rules: S→ A, A→ a A, A→ ε

– S is the start symbol
– It will generate words such as a, aa, aaa, aaa.
– The set of words generated by this regular grammar is a regular language.
– This regular language can also be expressed in regular expression (a)*.

(a) Regular languages are closed under union, intersection and concatenation.
What does it mean? Why is it important?

• This means that if L1 and L2 are two regular languages, then L1 ∪ L2, L1
∩ L2, and the language strings that are the concatenation of L1 and L2 are
also regular languages.
• This closure property allows us to apply operations on regular languages

to produce a regular language.
• This allows for NLP problems to be factored into small simple parts, such

that we can develop regular languages for each part, and combine them
into a complex system to handle the NLP problems. This is particularly
relevant for transducers and the composition operation, which are used
in many NLP pipelines. (Note that FSTs implement “regular relations”
rather that regular languages, but the distinction is a bit subtle and is not
something we will dive into.)

(b) Draw a Finite State Acceptor (FSA) for word morphology to show the possi-
ble derivations from root forms using the words: play, played, playing; walk,
walked, walking; sit, sat, sitting.

• There are many correct answers. Below is one:

4



(c) What are Weighted Finite State Acceptors (WFSAs)? When and why are they
useful?

• WFSAs are generalizations of FSAs, with each path assigned a score, com-
puted from the transitions, the initial state, and the final state. The total
score for any path is equal to the sum of the scores of the initial state, the
transitions, and the final state.
• WFSAs can produce a score for each valid word for sub-word decompo-

sition problems or sentence for words-in-sentence problems, while FSAs
have no way to express preferences among technically valid words or sen-
tences.
• For example, WFSAs can assign scores to all strings of characters forming

words, so that spelling mistakes, new words, or strange-but-acceptable
words can still be handled.
• The same argument holds for sequences of words forming sentences. Clearly

some word sequences are gibberish, but being able to provide a numer-
ical score can help in many applications, like how LMs can be used in
sentence generation, speech recognition, OCR, translation, etc.

5


