School of Computing and Information Systems
The University of Melbourne
COMP90042 WEB SEARCH AND TEXT ANALYSIS (Semester 1, 2019)

Workshop exercises: Week 3
Discussion

1. Data compression of a postings list in an inverted index can help reduce space
usage of the index.

(a) What is the intuition behind compression algorithms used for postings list
compression? Why do they work?

e Data compression seeks to reduce space usage by removing redundancy
from the data. As a general principle, we want to spend fewer bits rep-
resenting objects that occur often. For example, a regular ASCII symbols
always 8 bits. However, in English text symbols such as * * or e’ occur
much more often. Thus, when storing English text we would like to rep-
resent frequent symbols with less than 8 bits. On the other hand symbols
that occur infrequently (such as 'q” or z’) could even be represented using
more than 8 bits!

e In terms of postings list compression we generally have two sequences
of integers associated with each term. The ids of documents containing
that term (in the range [1,N] where N is the number of documents in the
collection) and the frequencies with which each term occurs in a specific
document.

e The list of document identifiers is generally stored as an increasing se-
quence of integers often containing large numbers. Frequencies are gen-
erally small (a given word only occurs a few times in each document).

e Instead of storing the increasing list of document identifiers we instead
store the gaps between subsequent document ids. This transforms the
postings lists data into a set of integers consisting of mostly small val-
ues. Thus, we seek to create integer compression schemes which are able
to store small numbers efficiently, while spending more bits on large num-
bers (which occur infrequently).

(b) What is Variable Byte Compression and how does it compress an integer?

e Variable Byte compression is an integer encoding scheme which allows
storing small numbers in fewer bytes (compared to using a fixed 32/64
bits per integer).

e Conceptually it chunks up the binary representation of a number X into 7
bit chunks. Each chunk is stored in an individual byte where the top bit is
used to indicate if the current byte stores a complete number or additional
bytes have to processed.

e Small numbers (less than 128) can be stored in one byte only. In prac-
tice this corresponds to 95% of all postings that have to be stored in an
inverted index.

(c) Determine the values of integers X and Y that were encoded as the byte se-
quence [52,34,147,42,197] using the Variable Byte algorithm described in the
lecture slides 10.

e It works as follows:
i. Read byte 52 which corresponds to 00110100.
ii. The top bit is not set so we read the next byte 34 = 00100010.
iii. Again the top bit is not set. We read the next byte 147 = 10010011.
iv. Now the top bit is set, we have read all the bytes to decode the first
number.
v. We wrote the least significant 7 bits first so the 7 bits coming from 52
correspond to the left-most 7 bit chunk of the
final number: xxxxxxx | xxxxxxx|0110100
vi. Next, the 7 bits extracted from 34 are added: xxxxxxx|0100010|0110100
vii. Finally, the last 7 bits are added to the bit
representation: 001001110100010[0110100, which is 315700.
viii. The second number is decoded the same way as 42 = 00101010,
197 =11000101 whichis 1000101|0101010 = 8874.
e Interestingly, Vbyte codes are self-delimiting, meaning we don’t have to
store how many numbers there are or where they start and end.

2. Algorithms such as WAND help speed up query processing.
(a) Whatis the intuition behind WAND? What is the output produced by WAND?

e In practice, search engines (and users!) are only interested in the first
10/100 documents so evaluating everything is very inefficient. Even if
a single evaluation of one document is fast, for a large number of docu-
ments, searching would still take seconds which is unacceptable for most
users.

e WAND is a top-K query processing algorithm. Thus, it returns only the
top-K highest scoring documents.

¢ As no complete ranking of all documents is required, we can skip evalu-
ating documents that would/could not enter the final top-K results list.

(b) What extra information is stored for each term to allow algorithms like WAND
to skip evaluating documents? How is it computed? What restriction does it
place on the query process?

e For each term in the collection one additional floating point number called
the maximum contribution is stored.

e The maximum contribution is used to overestimate the score any term of
the query can have on the total score of a document. Thus, if a document
score including these overestimated contributions is LESS than the lowest
scoring term in our current top-K list, it can never be part of the final
top-K result set. Therefore we do not have to evaluate it.

e The maximum contribution for each term is computed by computing the
similarity metric for a query that contains only that term for all docu-
ments in the index (at construction time!). For example, to compute the
maximum contribution for the term “house” we run the query “house”

2

and compute the score for all documents. The highest score is then stored
as the maximum contribution the term “house” can have to the score of
ANY document. Note that this introduces a dependency between the sim-
ilarity metric (e.g. BM25) and the index which is stored on disk. Thus, we
cannot use a different metric at query time.

¢ Additionally, we would want the underlying postings list representation
to support the GEQ operation which allows us to efficiently skip over doc-
uments without decompressing large parts of the index.

(c) Assume Document 13 has just been evaluated. In the setting below, what is
the next document that will be evaluated?

Query Q: The quick brown fox withk =2

Max

The 09(2 |3 |7 |8 |9 |10§11}12}13|17|18]19

fox 7.115 7 8 13 # ‘ Score | Id
! 1 8.1 7
2 6.3 5

quick 1.9|5 |6 |9 |11|14]18

!
brown 23|2 |4 |5 |15|42|84|9%

e 13 is evaluated and might enter the top-K list.

o After 13 is evaluated the list for the term fox is finished. Thus, it can no
longer contribute to the score of any document.

e To decide which is the next potential document to be evaluated, we (1) sort
the list by increasing current id and (2) sum up the maximum contribu-
tions of the lists (top to bottom) until the sum is larger than the smallest
score in our top-K list.

e However, the maximum scores for the remaining lists (fox is finished) is
0.9,19and 2.3 =09+ 1.9+ 2.3 = 5.1. So, even if 13 does not get added
to the top-K list, the minimum score in the heap is already larger than
the score of ANY remaining document we have not evaluated. Thus, the
WAND algorithm finishes and we return the top-K result list.

3. Discuss the concepts of query expansion and relevance feedback and how they
are related.

e Query expansion improves query recall by dealing with the vocabulary mis-
match problem where terminology in the query and terminology in the docu-
ment collection don’t match (e.g. poison vs toxin).

e Relevance feedback is one way to expand/reformulate the query by incor-
porating feedback into the query process. There are many different ways to
incorporate and retrieve relevance feedback (discussed below).

e However, there are other query expansions methods such as using a the-
saurus or wordnet which do not require relevance feedback.

4. Discuss and give an example of the following forms of relevance feedback.

(a) User relevance feedback
(b) Pseudo relevance feedback

)
(c) Indirect relevance feedback
)

(a) User feedback comes directly from the user issuing the query. This might be
in the form of clicking on a result or swiping left/right on your phone. In
the lecture we looked at Pinterest where we could refine the results returned
for the query “watch” by clicking on watches we like. HOW this feedback is
incorporated into the search process depends. One way could be to do query
expansion.

(b) Pseudo relevance feedback (or sometimes called blind feedback) is an auto-
mated system that does not require any actions by the user. It is based on the
assumption that after running the original user query, the top documents will
likely be relevant. So we analyze these documents to extract additional infor-
mative/important terms from these documents. Different methods can be
used to determine these additional terms. We might look at the topic models
of these documents to determine additional terms. Another methods might
look at the frequency of terms in the documents relative to their occurrence
in the overall collection. For example, in the top documents of the query
“melbourne public transport”, the terms “tram” or “bus” will likely occur
with higher frequency than what we would expect from other documents in
the collection. Thus, these terms might be candidates for query expansion. If
these terms are included in a secondary query, we would be able to find docu-
ments talking about “melbourne trams” even though they might not mention
“public transport”. Thus, the recall would increase.

(c) User feedback is problematic because users might be reluctant to provide
manual feedback. Pseudo relevance feedback has the drawback that no ac-
tual feedback from any human is incorporated in the process. Indirect user
feedback seeks to incorporate implicit feedback from users. That might be
statistics about what pages users visit after being displayed a results for a
certain query. Thus, the feedback would not be from the current user seek-
ing information, but other users who searched for the same query in the past.
These information are collected in large quantities in query click logs at most
major web search engines and e-commerce platforms. Note that these in-
formation might not be used to perform query expansion but rather re-rank
documents directly based on this click feedback.

5. Is it possible to perform query expansion without relevance feedback and vice
versa? Discuss!

(@) Query expansion can be performed using global resources such as WordNet
which do not require relevance feedback.

(b) Relevance feedback from a user (direct or indirect) can be incorporated with-
out performing query expansion. This might be in the form of re-ranking
existing documents or discovering documents that are similar to documents
(the “more like this” button) to the ones users consider relevant.

