
School of Computing and Information Systems
The University of Melbourne

COMP90042
WEB SEARCH AND TEXT ANALYSIS (Semester 1, 2019)

Sample solutions for discussion exercises: Week 2

Discussion

1. Give some examples of text processing applications that you use on a daily basis.

• There are lots! For example, Google (or other web search engines), Siri (or
other speech-to-text systems), predictive messaging, spelling correction, ma-
chine translation, and so on.

2. What is tokenisation and why is it important?

• Tokenisation is the act of transforming a (long) document into a set of mean-
ingful substrings, so that we can compare with other (long) documents.
• In general, a document is too long — and contains too much information

— to manipulate directly. There are some counter-examples, like language
identification, which we need to perform before we decide how to tokenise
anyway.

(a) What are stemming and lemmatisation, and how are they different? Give
examples from the WSTA N1 preprocessing iPython notebook.
• Both stemming and lemmatisation are mechanisms for transforming a to-

ken into a canonical (base, normalised) form. For example, turning the
token walking into its base form walk.
• Both operate by applying a series of rewrite operations to remove or re-

place (parts of) affixes (primarily suffixes). (In English, anyway.)
• However, lemmatisation works in conjunction with a lexicon: a list of

valid words in the language. The goal is to turn the input token into an
element of this list (a valid word) using the rewrite rules. If the re-write
rules can’t be used to transform the token into a valid word, then the token
is left alone. (For example, the token lemming wouldn’t be transformed
into lemm because the latter isn’t in the word list.)
• Stemming simply applies the rewrite rules, even if the output is a garbage

token (like lemm).
• One further idea is the difference between inflectional morphology and

derivational morphology:
– Inflectional morphology is the systematic process (in many but not all

languages) by which tokens are altered to conform to certain grammat-
ical constraints: for example, if the English noun teacher is plural, then
it must be represented as teachers. The idea is that these changes don’t
really alter the meaning of the term. Consequently, both stemming and
lemmatisation attempt to remove this kind of morphology.

1



– Derivational morphology is the (semi-)systematic process by which
we transform terms of one class into a different class (more on this
next week). For example, if we would like to make the English verb
teach into a noun (someone who performs the action of teaching), then
it must be represented as teacher. This kind of morphology tends to
produce terms that differ (perhaps subtly) in meaning, and the two
separate forms are usually both listed in the lexicon. Consequently,
lemmatisation doesn’t usually remove derivational morphology in its
normalisation process, but stemming usually does.

• Another example, from the notebook, is the token this. Using the lem-
matiser, the token remains unchanged, because it is already listed in the
lexicon. The stemmer, however, strips the -s suffix, so that we end up with
thi.

3. Compare using a term–document matrix vs. an inverted index for resolving a
ranked query efficiently.

• Assuming Term-at-a-Time processing (not WAND) some kind of TF–IDF vec-
tor space model using cosine similarity, using accumulators to keep track of
each document’s score:
• For the term–document matrix, we will need to read the TDM value of every

document for each query term. (Note that shortcuts — like skipping docu-
ments with a term weight of 0 — save little time here.)
• For the inverted index, once more we only need to examine each entry in each

postings list once; except that, here we incrementing the accumulator weights
rather than comparing documents identifiers.
• Algorithms such as WAND can further improve processing of the inverted

index lists.

4. Using the TF-IDF vector space model, using raw term frequency tfd,t, log N
dft

as the
inverse document frequency formulation, find the ranking for the query apple
ibm, based on calculated over the following collection. You should use cosine
similarity, but for this question, we will skip the document normalisation step
(for time reasons.)

apple ibm lemon sun
D1 4 0 1 1
D2 5 0 5 0
D3 2 5 0 0
D4 1 0 1 7
D5 0 1 3 0

• The similarity metric is STF-IDF(d,Q) =
∑

t∈Q tfd,t × log N
dft

which has to be
computed for the query and each document. Where tfd,t is the number of
times term t occurs in document d and dft is the number of documents term t
occurs in the collection. N is the total number of documents in the collection..
• Now, let’s consider apple, which occurs in 4 documents (dfa = 4;N = 5):

2



• apple occurs in D1 4 times (tf1,a = 4), so its TF-IDF weight becomes:

w1,a = tf1,a × log
N

dfa
= 4× log

5

4
= 0.89

• Performing the same computation for all documents yields with term apple:

w2,a = tf2,a × log
N

dfa
= 5× log

5

4
= 1.12

w3,a = tf3,a × log
N

dfa
= 2× log

5

4
= 0.45

w4,a = tf4,a × log
N

dfa
= 1× log

5

4
= 0.22

w5,a = tf5,a × log
N

dfa
= 0× log

5

4
= 0

• And then the other terms (ibm, lemon, sun). First we’ll calculate the idf
terms:

apple ibm lemon sun
idf log 5

4
= 0.22 log 5

2
= 0.92 log 5

4
= 0.22 log 5

2
= 0.92

And use these to produce the remaining TFxIDF scores:

apple ibm lemon sun
D1 0.89 0 0.22 0.92
D2 1.12 0 1.12 0
D3 0.45 4.58 0 0
D4 0.22 0 0.22 6.41
D5 0 0.92 0.67 0

• The IDF component controls the “importance” of each term in the query. The
term apple occurs in most documents so it contributes less towards identify-
ing relevant documents. Imagine a large text collection of English documents.
Most documents will contain multiple occurrences the term “the”. So, the IDF
adjusts the importance of terms to the overall similarity score of documents.
• On the other hand, consider the term ibm, which occurs in only a few docu-

ments. Thus, the magnitude of the w,i weights is much higher. The property
that less frequent documents are generally more important is also utilised the
WAND algorithm (see below) which exploits this property to avoid scoring
documents which only contain terms that occur frequently.
• finding the final scores for each document is quite easy by comparison: we

simply sum the TF-IDF values for the terms in the query:

D1 : w1,a + w1,i = 0.89 + 0 = 0.89

D2 : w2,a + w2,i = 1.12 + 0 = 1.12

D3 : w3,a + w3,i = 0.45 + 4.58 = 5.03

D4 : w4,a + w4,i = 0.22 + 0 = 0.22

D5 : w5,a + w5,i = 0 + 0.92 = 0.92

3



• The most “relevant” document according to our TF-IDF metric is D3 by a
large margin because it contains a rare term (dfi = 2), multiple times!
• You were instructed to skip the document normalisation step. This corre-

sponds to normalising each row vector (document) by its vector magnitude

(sum of squares). I.e., The normalisation factor Wd =

√∑
t

(
tfd,t × log N

dft

)2
.

For completeness, here’s how you would do it:

apple ibm lemon sun magnitude
D1 0.89 0 0.22 0.92 1.30
D2 1.12 0 1.12 0 1.58
D3 0.45 4.58 0 0 4.6
D4 0.22 0 0.22 6.41 6.43
D5 0 0.92 0.67 0 1.14

And then divide through each row:

apple ibm lemon sun
D1 0.69 0 0.17 0.71
D2 0.71 0 0.70 0
D3 0.10 0.99 0 0
D4 0.03 0 0.03 0.999
D5 0 0.81 0.59 0

For our query of apple and ibm, the top scoring document is still D3 with a
score of 0.1 + 0.99 = 1.09.

5. Recall the Okapi BM25 term weighting formula:

wt = log
N − ft + 0.5

ft + 0.5
× (k1 + 1)fd,t

k1((1− b) + b Ld

Lavg
) + fd,t

× (k3 + 1)fq,t
k3 + fq,t

where ft is the document frequency of term t, fd,t is the term frequency of term
t in document d and fq,t is the term frequency of term t in query q. k1, k3 and b
are parameters with 0 ≤ k1 < ∞, 0 ≤ k3 < ∞ and 0 ≤ b ≤ 1. Ld is the length of
document d and Lavg is the average document length in the collection.
What are its parameters, and what do they signify? How do the components
relate to TF (term frequency) and inverse document frequency (IDF)?

(a) What are its parameters, and what do they signify?
• k1 controls the weight of the term frequencies: high values mean that the

weight for a term in the query is mostly linear in the frequency of the
term in a document; low values mean that the term frequencies are mostly
ignored, and only their presence/absence in the documents matters.
• k2 isn’t in this model. In fact, in practice, k2 = k3 = 0 and k1 = 0.9, b = 0.4

gives good performance. These values were determined empirically and
will be need to be “tuned” for different text collections.
• k3 controls the term frequency within the query — so that, where terms

are repeated in the query, they contribute more to the document ranking.
(Note that this is often set to 0, so that query terms are only binary.)

4



• b controls the penalty for long documents: when b is close to 0, document
length is mostly excluded from the model; when b is large, short docu-
ments are strongly preferred to long documents (all else equal).
• Note that there are many different similarity metrics out there. In prac-

tice we are mainly interested in similarity metrics that can be computed
efficiently while giving a reasonable relevance ranking as the results will
often be reranked (scored again) by a more complex neural model contain-
ing many more features such as PageRank etc.

(b) How do the components relate to TF (term frequency) and inverse document
frequency (IDF)?
• As discussed above, k1 controls the importance of the term frequencies

(TF).
• Term weights (IDF) in the BM25 model can be negative, if the term ap-

pears in greater than half of the documents in the collection. This is un-
likely to be a problem in many non-trivial collections, as such a common
word is a stop–word, and we would simply exclude it from the collection.

5


