Lexical Semantics

COMP90042 Lecture 9
Sentiment analysis revisited

• Bag of words, kNN classifier. Training data:
 * “This is a good movie.” → 🌟
 * “This is a great movie.” → 😊
 * “This is a terrible film.” → 😞
 * “This is a wonderful film.” → ?
Sentiment analysis revisited

* “This is a wonderful film.” → 😞

• Two problems:
 * The model does not know that “movie” and “film” are synonyms. Since “film” appears only in negative examples the model learns that it is a negative word.
 * “wonderful” is not in the vocabulary (OOV – Out-Of-Vocabulary).

• We need to add word semantics to the model.
Sentiment analysis revisited

• “This is a great movie.” \(\rightarrow\) 😊

• “This is a wonderful film.” \(\rightarrow\) ?

• Comparing words directly will not work. How to make sure we compare word **meanings** instead?

• Solution: add this information explicitly through a **lexical database**.
Word semantics

• Lexical semantics (this lecture)
 * How the meanings of words connect to one another.
 * Manually constructed resources: lexicons, thesauri, ontologies, etc.

• Distributional semantics (next)
 * How words relate to each other in the text.
 * Automatically created resources from corpora.
What do words mean?

• Referents in the physical or social world
 * But not usually useful in text analysis

• Their dictionary definition
 * But dictionary definitions are necessarily circular
 * Only useful if meaning is already understood

• Their relationships with other words
 * Also circular, but more practical
Words and senses

Bank (noun):

1. A financial institution; a building where a financial institution offers services; a repository; a container for holding money
2. Land sloping down to a body of water

- *Bank* has many senses (more than just these)
- 1 and 2 are *homonyms*
 * Considered different lexical items by lexicographers
- 1 shows *polysemy*
 * Related senses of the same lexical item
Basic Lexical Relations

- Synonyms (same) and antonyms (opposite/complementary)
- Hypernyms (generic), hyponyms (specific)
- Holonyms (whole) and meronyms (part)
WordNet

- A database of lexical relations
- English WordNet includes ~120,000 nouns, ~12,000 verbs, ~21,000 adjectives, ~4,000 adverbs
- WordNets available in most major languages (www.globalwordnet.org, https://babelnet.org/)
- English version freely available (accessible via NLTK)
Synsets

- The nodes of WordNet are not words, but meanings
- There are represented by sets of synonyms, or *synsets*

```python
>>> nltk.corpus.wordnet.synsets('bank')

[Synset('bank.n.01'), Synset('depository_financial_institution.n.01'), Synset('bank.n.03'), Synset('bank.n.04'), Synset('bank.n.05'), Synset('bank.n.06'), Synset('bank.n.07'), Synset('savings_bank.n.02'), Synset('bank.n.09'), Synset('bank.n.10'), Synset('bank.v.01'), Synset('bank.v.02'), Synset('bank.v.03'), Synset('bank.v.04'), Synset('bank.v.05'), Synset('deposit.v.02'), Synset('bank.v.07'), Synset('trust.v.01')]

>>> nltk.corpus.wordnet.synsets('bank')[0].definition()

u'sloping land (especially the slope beside a body of water)'

>>> nltk.corpus.wordnet.synsets('bank')[1].lemma_names()

[u'depository_financial_institution', u'bank', u'banking_concern', u'banking_company']
```
Lexical Relations in wordnet

- Connections between nodes are lexical relations
- Including all the major ones mentioned earlier

```python
>>> print nltk.corpus.wordnet.lemmas('sister')[0].antonyms()
[Lemma('brother.n.01.brother')]

>>> nltk.corpus.wordnet.synsets('relative')[0].hypernyms()
[Synset('person.n.01')]

>>> nltk.corpus.wordnet.synsets('body')[0].part_meronyms()
[Synset('arm.n.01'), Synset('articulatory_system.n.01'), Synset('body_substance.n.01'), Synset('cavity.n.04'), Synset('circulatory_system.n.01'), Synset('crotch.n.02'), Synset('digestive_system.n.01'), Synset('endocrine_system.n.01'), Synset('head.n.01'), Synset('leg.n.01'), Synset('lymphatic_system.n.01'), Synset('musculoskeletal_system.n.01'), Synset('neck.n.01'), Synset('nervous_system.n.01'), Synset('pressure_point.n.01'), Synset('respiratory_system.n.01'), Synset('sensory_system.n.02'), Synset('torso.n.01'), Synset('vascular_system.n.01')]
```
Word similarity with paths

- Want to go beyond specific lexical relations
 * E.g. *money* and *nickel* are related, despite no direct lexical relationship

- Given WordNet, find similarity based on path length in hypernym/hyponym tree

$$\text{simpath}(c_1, c_2) = \frac{1}{\text{pathlen}(c_1, c_2)}$$

- **Example Calculations**

 - $\text{simpath}(\text{nickel}, \text{coin}) = \frac{1}{2} = 0.5$
 - $\text{simpath}(\text{nickel}, \text{currency}) = \frac{1}{4} = 0.25$
 - $\text{simpath}(\text{nickel}, \text{money}) = \frac{1}{6} = 0.17$
 - $\text{simpath}(\text{nickel}, \text{Richter scale}) = \frac{1}{8} = 0.13$
Beyond path length

- Problem: edges vary widely in actual semantic distance
 - Much bigger jumps near top of hierarchy
- Solution 1: include depth information (Wu & Palmer)
 - Use path to find lowest common subsumer (LCS)
 - Compare using depths

\[
sim_{WUP}(c_1, c_2) = \frac{2 \times \text{depth}(\text{LCS}(c_1, c_2))}{\text{depth}(c_1) + \text{depth}(c_2)}
\]

\[
sim_{WUP}(\text{nickel}, \text{money}) = \frac{2 \times 2}{3 + 6} = .44
\]

\[
sim_{WUP}(\text{nickel}, \text{Richter scale}) = \frac{2 \times 1}{3 + 6} = .22
\]
Information content

• But count of edges is still poor semantic distance metric

• Solution 2: include statistics from corpus (Resnik; Lin)
 * \(P(c) \): prob. that word in corpus is instance of concept \(c \)
 \[
 P(c) = \frac{\sum_{w \in \text{words}(c)} \text{count}(w)}{N}
 \]
 * information content (IC)
 \[
 IC(c) = -\log P(c)
 \]
 * Lin distance
 \[
 \text{simlin}(c_1, c_2) = \frac{2 \cdot IC(\text{LCS}(c_1, c_2))}{IC(c_1) + IC(c_2)}
 \]
Sentiment analysis revisited

• “This is a great movie.” → 😊

• “This is a wonderful film.” → ?

• Comparing words using WordNet paths work well if our classifier is based on word similarities (such as kNN)

• But what if we want sense as a general feature representation, so we can employ other classifiers?

• Solution: map words in text to senses in WordNet explicitly.
Word sense disambiguation

- Hacky (but popular) “solutions”:
 - Assume the most popular sense
 - For word similarity, take minimum across senses

- A better solution: Word Sense Disambiguation

- Good WSD potentially useful for many tasks in NLP
 - In practice, often ignored because good WSD too hard
 - Active research area
Supervised WSD

• Apply standard machine classifiers

• Feature vectors typically words and syntax around target
 * But context is ambiguous too!
 * How big should context window be? (typically very small)

• Requires sense-tagged corpora
 * E.g. SENSEVAL, SEMCOR (available in NLTK)
 * Very time consuming to create!
Less supervised approaches

• Lesk: Choose sense whose dictionary gloss from WordNet most overlaps with the context

• Yarowsky: Bootstrap method
 * Create a small seed training set
 • *plant* (factory vs. vegetation): *manufacturing plant, plant life*
 * Iteratively expand training set with untagged examples
 • Train a statistical classifier on current training set
 • Add confidently predicted examples to training set
 * Uses *one sense per collocation, one sense per document*

• Graph methods in WordNet
Other databases - Framenet

- A lexical data base of *frames*, typically prototypical situations
 * E.g. “apply_heat” frame

- Includes lists of *lexical units* that evoke the frame
 * E.g. *cook*, *fry*, *bake*, *boil*, etc.

- Lists of *semantic roles or frame elements*
 * E.g. “the cook”, “the food”, “the container”, “the instrument”

- Semantic relationships among frames
 * “apply_heat” is Causitive of “absorb_heat”, is Used by “cooking_creation”
Moving on to the corpus

• Manually-tagged lexical resources an important starting point for text analysis

• But much modern work attempts to derive semantic information directly from corpora, without human intervention

• Let’s add some distributional information
Reading

- JM3 C.1-C.3