N-gram language models

COMP90042 Lecture 8

THE UNIVERSITY OF

MELBOURNEL

COPYRIGHT 2019, THE UNIVERSITY OF MELBOURNE

COMP90042 W.S.T.A. (S1 2019)

L9

Language models

* Assign a probability to a sequence of words

* Useful for

* Speech recognition
* Spelling correction

* Machine translation

* Query completion

* Optical character recog.

* Other generation tasks
* Summarisation

* Dialogue systems

lots of|

ots of love

ots of fish

ots of discharge
ots of lollies

Fress Enter to search

COMP90042 W.S.T.A. (S1 2019)

L9

Outline

* Deriving n-gram language models

* Easy: Markov models

* Smoothing to deal with sparsity

* Hard: add-1 smoothing does not really work here

* Evaluating language models

COMP90042 W.S.T.A. (S1 2019) L9

Probabilities: Joint to conditional

Our goal is to get a probability for an arbitrary sequence of
m words

P(wy, wy, ..., wy,)

First step is to apply the chain rule to convert joint
probabilities to conditional ones

P(Wy,W3,...Wr) = P(W)P(Wz| wi)P(W3z| wy, wy)...
P(Wm|wy .Wiy_q)

4

COMP90042 W.S.T.A. (S1 2019)

L9

The Markov Assumption

Still intractable, so make a simplifying assumption:

P(wilwy ...w;_{) = P(W;|W;_, 41 - W;_q)
For some small n

When n =1, a unigram model
P(wy, W, .. W) = [1;24 P(W;)
When n = 2, a bigram model
P(wy, Wy, .. i) = [T;Z1 P(wi|w;_1)
When n = 3, a trigram model

P(wq, wy, ..wy) = ?;1P(Wi|Wi—2Wi—1)

COMP90042 W.S.T.A. (S1 2019)

L9

Maximum Likelihood estimation

How do we calculate the probabilities? Estimate based on counts in
our corpus:

For unigram models,

C(w;)
P(w;) = T
For bigram models,
C(w;_qw;)
P(wilw;_q1) = C(vlv- 1)l
i

For n-gram models generally,
C(Wi—nt1 W)
C(Wi—n+1 - Wi-1)

P(Wilwi_n41 --Wi—q) =

COMP90042 W.S.T.A. (S1 2019)

L9

Book-ending Sequences

* Special tags used to denote start and end of
sequence

* <s> = sentence start (0 in E18)
* <[s>=sentence end (m in E18)

* Include (n-1) start tokens for n-gram model, to
provide context to generate first word

* never generate <s>

* generating </s> terminates the sequence

COMP90042 W.S.T.A. (S1 2019) L9

Trigram example

Corpus:

<S> <S> yes no no ho no yes </s>
<S> <S> N0 No No yes yes yes no </s>

What is the probability of

Mistake corrected 28/3/19

as shown in red (there are two i
instances of “no yes’,

followed by </s> and yes,

under a trigram language model? respectively. Thus
P(</s> | noyes) =%

<S> <S> yes no no yes </s>

P(sent=yes no no yes)
= P(yes [<s><s>) * P(no | <s>yes) * P(no | yes no)
* P(yes | no no) * P(</s> | no yes)
=%*1*%* %% =01

COMP90042 W.S.T.A. (S1 2019) L9

Several problems

* Language has long distance effects — need large n

* The lecture/s that took place last week was/were on
retrieval.

* Resulting probabilities are often very small

* Use log probability to avoid numerical underflow

* No probabilities for unseen words

e Words in new contexts

* By default, zero count for any n-gram we’ve never seen
before, zero probability for the sentence

* Need to smooth the LM!

COMP90042 W.S.T.A. (S1 2019) L9

Smoothing (or discounting)

* Basic idea: give events you’ve never seen before some
probability

* Have to take away probability from events you have seen
* Must be the case that P(everything) =1

* Many different kinds of smoothing
* Laplacian (add-one) smoothing
* Add-k smoothing

+ Jelinek-Mercer interpolation

* Katz backoff

* Absolute discounting

+ Kneser-Ney

* And others...

10

COMP90042 W.S.T.A. (S1 2019)

L9

Laplacian (Add-one) smoothing

* Simple idea: pretend we’ve seen each n-gram once
more than we did.

For unigram models (V= the vocabulary),
Cw;) +1

M + |V|

Poaa1(w;) =

For bigram models,
C(w;_iw;) +1

C(wi_1) + |V

Poaar (Wilw;_q) =

11

COMP90042 W.S.T.A. (S1 2019) L9

Add-one Example

<s> the rat ate the cheese </s>

What'’s the bigram probability P(ate |rat) under add-one
smoothing?

_ C(rat ate)+1
C(rat)+|V]

V = { the, rat, ate, cheese, </s> }

NN

What’s the bigram probability P(ate|cheese) under add-
one smoothing?

Corrected denominator in both expressions to
6. Thatis |V| =5, and

—_ C(Cheese ate)+1 = l count(rat)=count(cheese)=1. Note that <s> is
C(cheese)+|V| 6 not included in V as it is never generated.
(28/3/19)

12

COMP90042 W.S.T.A. (S1 2019) L9

Add-k smoothing

* Adding one is often too much

* Instead, add a fraction k
C(Wi_z, Wi—1, Wi) + k

P . : , . =
adak(Wi|Wi-1, W) C(Wi—z,Wi—1) + K|V

e Have to choose k

* number of “classes” is huge (n-grams), so can have a big
effect

13

COMP90042 W.S.T.A. (S1 2019)

L9

Kneser-Ney smoothing

* State-of-the-art method for n-gram language models.

* A fairly complex method, combining three ideas:

* |Interpolation (or alternatively, backoff)
* Absolute discounting

* Continuation counts

* Let’s see each of these steps in detail.

14

COMP90042 W.S.T.A. (S1 2019) L9

Backoff and Interpolation

* Smooth using lower-order probabilities (less context)

* Backoff: fall back to n-1-gram counts only when n-
gram counts are zero

Pgo (Wi|lw;_5, w;_1)

_ P” (Wilwi—Z'Wi—l) lf C(Wi—Z)Wi—l)Wi) >0
a(w;_,,W;_1) * Pgo(W;|w;_q) otherwise

P* and @ must preserve “sum to 1” property.

15

COMP90042 W.S.T.A. (S1 2019)

L9

Backoff and Interpolation

Interpolation involves taking a linear combination of all
relevant probabilities

Defined recursively:
Pinterp(Wilwi—Z'Wi—l) =
AWi_p, wi_q) P(Wi|w;_5, w;_4)
+ (1 — AMWi_z Wi—1)Pinterp (Wi [Wi_q)

Interpolation of probabilities preserves “sum to 1”
property

AS can be constant across all contexts
* But better if sensitive to n-grams

Parameters need to be trained on held out data

16

COMP90042 W.S.T.A. (S1 2019) L9

Absolute discounting

 What if we estimate the counts from a heldout
corpus?

* Turns out a single absolute discounting works for
almost all n-grams Bigram counl i Bigram count

0 0.0000270
| 0.448
)

+ Most mass taken from low counts
* Doesn’t effect high counts much

25
4
'|
21
I
21
El

o D0 wed O LA e Lad
Cﬂ:“ﬂJﬂ"-'..-'l-l--'..-Jl‘-.'l-—
b

C(wi_{,w;)—d
C(wi-1)

* Pyps(wilw;_q) = + A(Wi-1)P(w;)

17

COMP90042 W.S.T.A. (S1 2019) L9

Continuation counts

* When backing-off or interpolating, raw counts can be
fairly unreliable

« P(Zealand|0ld) =? will interpolate with P(Zealand)
* Zealand has high counts, but only appears after New

 Don’t want to assign it much probability when New not present

* |Instead, use frequency of contexts in which word
appears

* For many words, closely related to total count
* But just 1 for Zealand
continuation_count(w,) = [{v: count(v,w;) > 0}

18

COMP90042 W.S.T.A. (S1 2019)

L9

Throwing it all together

maX(O; CKN (Wi—Z) Wi—1, Wi) IR d)

CKN(Wi—Z: Wi—l)

Pyn (Wilwi_p, wi_q) =

+ 7\(Wi—2» Wi—l)PKN (wilw;_1)

}\(Wi_z; Wi_1) = 4 [{w: Cen(Wi_p, wi_1,w) > 0}
CkN(Wi—2,Wi—1)

Cryis a continuation count, except for the highest n-gram
order: we use a regular count instead.

19

COMP90042 W.S.T.A. (S1 2019) L9

In practice

* Best Kneser-Ney version uses different discount
values for each n-gram order.

* Most used LMs use 5-grams as the max order but
higher order sometimes can be used if large amounts
of data are available.

20

COMP90042 W.S.T.A. (S1 2019)

L9

Evaluation

* Extrinsic

* E.g. spelling correction, machine translation

* |ntrinsic

* Perplexity on held-out test set

21

COMP90042 W.S.T.A. (S1 2019)

L9

Perplexity

* |nverse probability of entire test set
* Normalized by number of words (including </s>)

* The lower the better

m 1

PP(wy,wy,..w,,) = P Or o)
1 W, .. Wiy

\

equivalently

_logp P(wy, wa, .. wm)
PP(wy, w,, . W) =2 m

* Unknown (OOV) words a problem (omit)

22

COMP90042 W.S.T.A. (S1 2019)

L9

Example perplexity scores

size (M) perplexity
tokens m=2m=3m=bm=Tm=10m =0

EN 6470 321.6 183.8 154.3 152.7 152.5 152.3
ES 6276 231.3 133.2 111.7 109.7 109.3 109.2

FR 6100 215.8 109.2 85.2
DE 5540 588.3 336.6 292.8

82.6 82.4

288.1 287.8 287.8

Table 2: Perplexities on English, French, German new-
stests 2014, and Spanish newstest 2013 when trained on
32Gi1B chunks of English, Spanish, French, and German

Common Crawl corpus.

Shareghi, Petri, Haffari and

Cohn. Transactions of ACL,
2016.

unit time (s)mem (GiB)m =5m =10m =20m = o

word 8164 6.29 73.45 68.66 68.76 68&8.80
character 17935 18.58 3.93 2.69 2.37 2.33

Table 4: Perplexity results for the 1 billion word bench-
mark corpus, showing word based and character based
MKN models, for different m. Timings and peak mem-

23

COMP90042 W.S.T.A. (S1 2019)

L9

Generated texts

* Language models can also be used to generate texts

* Given a initial word, sample the next word according to
the probability distribution defined by the language

model.

This shall forbid it should be branded, if renown made it
empty

They also point to ninety nine point six billion dollars from
two hundred four oh three percent of the rates of interest
stores as Mexico and Brazil on market conditions

24

COMP90042 W.S.T.A. (S1 2019)

L9

A final word

* N-gram language models are a structure-neutral way
to capture the predictability of language

* Information can be derived in an unsupervised
fashion, scalable to large corpora

* Require smoothing to be effective, due to sparsity

25

COMP90042 W.S.T.A. (S1 2019)

L9

Reading

* E18 Chapter 6 (skip 6.3)

26

