
1COPYRIGHT 2019, THE UNIVERSITY OF MELBOURNE

N-gram language models

COMP90042 Lecture 8

2

COMP90042 W.S.T.A. (S1 2019) L9

Language models

• Assign a probability to a sequence of words

• Useful for
* Speech recognition
* Spelling correction
* Machine translation
* Query completion
* Optical character recog.

• Other generation tasks
* Summarisation
* Dialogue systems

3

COMP90042 W.S.T.A. (S1 2019) L9

Outline

• Deriving n-gram language models
* Easy: Markov models

• Smoothing to deal with sparsity
* Hard: add-1 smoothing does not really work here

• Evaluating language models

4

COMP90042 W.S.T.A. (S1 2019) L9

Probabilities: Joint to conditional

Our goal is to get a probability for an arbitrary sequence of

m words

!(#$, #%, …, #&)

First step is to apply the chain rule to convert joint

probabilities to conditional ones

!(#$,#%,…,#&) = !(#$)!(#%| #$)!(#*| #$, #%)…
!(#&|#$ …#&-$)

5

COMP90042 W.S.T.A. (S1 2019) L9

The Markov Assumption

Still intractable, so make a simplifying assumption:

!(#$|#& …#$(&) ≈ !(#$|#$()*& …#$(&)

For some small n

When n = 1, a unigram model

!(#&, #+, .. #,) = ∏$0&
, !(#$)

When n = 2, a bigram model

!(#&, #+, .. #,) = ∏$0&
, !(#$|#$(&)

When n = 3, a trigram model

!(#&, #+, .. #,) = ∏$0&
, !(#$|#$(+#$(&)

6

COMP90042 W.S.T.A. (S1 2019) L9

Maximum Likelihood estimation

How do we calculate the probabilities? Estimate based on counts in
our corpus:

For unigram models,

!(#$) =
'(#$)
(

For	bigram	models,
!(#$|#$89) =

'(#$89#$)
'(#$89)

For	n-gram	models	generally,
!(#$|#$8=>9 …#$89) =

'(#$8=>9 …#$)
'(#$8=>9 …#$89)

7

COMP90042 W.S.T.A. (S1 2019) L9

Book-ending Sequences

• Special tags used to denote start and end of
sequence

* <s> = sentence start (□ in E18)

* </s> = sentence end (■ in E18)

• Include (n-1) start tokens for n-gram model, to
provide context to generate first word

* never generate <s>

* generating </s> terminates the sequence

8

COMP90042 W.S.T.A. (S1 2019) L9

Trigram example
Corpus:

<s> <s> yes no no no no yes </s>
<s> <s> no no no yes yes yes no </s>

What is the probability of

<s> <s> yes no no yes </s>

under a trigram language model?

P(sent=yes no no yes)
= P(yes |<s> <s>) * P(no | <s> yes) * P(no | yes no)

* P(yes | no no) * P(</s> | no yes)
= ½ * 1 * ½ * !" * ½ = 0.1

Mistake corrected 28/3/19
as shown in red (there are two i
instances of ”no yes”,
followed by </s> and yes,
respectively. Thus
P(</s> | no yes) = ½

9

COMP90042 W.S.T.A. (S1 2019) L9

Several problems

• Language has long distance effects — need large n
* The lecture/s that took place last week was/were on

retrieval.

• Resulting probabilities are often very small

* Use log probability to avoid numerical underflow

• No probabilities for unseen words

• Words in new contexts

* By default, zero count for any n-gram we’ve never seen

before, zero probability for the sentence

* Need to smooth the LM!

10

COMP90042 W.S.T.A. (S1 2019) L9

Smoothing (or discounting)

• Basic idea: give events you’ve never seen before some
probability

• Have to take away probability from events you have seen

• Must be the case that P(everything) = 1

• Many different kinds of smoothing
* Laplacian (add-one) smoothing
* Add-k smoothing
* Jelinek-Mercer interpolation
* Katz backoff
* Absolute discounting
* Kneser-Ney
* And others…

11

COMP90042 W.S.T.A. (S1 2019) L9

Laplacian (Add-one) smoothing

• Simple idea: pretend we’ve seen each n-gram once
more than we did.

For unigram models (V= the vocabulary),

!"##$(&') =
*(&') + 1

+ + |.|
For bigram models,

!"##$(&'|&'/$) =
* &'/$&' + 1
* &'/$ + |.|

12

COMP90042 W.S.T.A. (S1 2019) L9

Add-one Example

<s> the rat ate the cheese </s>

What’s the bigram probability P(ate|rat) under add-one
smoothing?

= ! "#$ #$% &'
! "#$ &|)| = *+ V = { the, rat, ate, cheese, </s> }

What’s the bigram probability P(ate|cheese) under add-
one smoothing?

= ! ,-%%.% #$% &'
! ,-%%.% &|)| = /+

Corrected denominator in both expressions to
6. That is |V| = 5, and
count(rat)=count(cheese)=1. Note that <s> is
not included in V as it is never generated.
(28/3/19)

13

COMP90042 W.S.T.A. (S1 2019) L9

Add-k smoothing

• Adding one is often too much

• Instead, add a fraction k

!"##$(&'|&')*, &'),) =
- &'),, &')*, &' + /
- &'),, &')* + /|0|

• Have to choose k
* number of “classes” is huge (n-grams), so can have a big

effect

14

COMP90042 W.S.T.A. (S1 2019) L9

Kneser-Ney smoothing

• State-of-the-art method for n-gram language models.

• A fairly complex method, combining three ideas:
* Interpolation (or alternatively, backoff)

* Absolute discounting

* Continuation counts

• Let’s see each of these steps in detail.

15

COMP90042 W.S.T.A. (S1 2019) L9

Backoff and Interpolation

• Smooth using lower-order probabilities (less context)

• Backoff: fall back to n-1-gram counts only when n-

gram counts are zero

!"#(%&|%&(), %&(+)

=,!
∗ (%&|%&(), %&(+) ./ 0 %&(), %&(+, %& > 0
3(%&(), %&(+) ∗ !"#(%&|%&(+) otherwise

P* and 3 must preserve “sum to 1” property.

16

COMP90042 W.S.T.A. (S1 2019) L9

Backoff and Interpolation

• Interpolation involves taking a linear combination of all
relevant probabilities

• Defined recursively:
!"#$%&'()"|)"+,,)"+.) =

λ()"+,,)"+.) !()"|)"+,,)"+.)
+ (1 − λ)"+,,)"+.) !"#$%&'()"|)"+.)

• Interpolation of probabilities preserves “sum to 1”
property

• λs can be constant across all contexts
* But better if sensitive to n-grams

• Parameters need to be trained on held out data

17

COMP90042 W.S.T.A. (S1 2019) L9

Absolute discounting

• What if we estimate the counts from a heldout
corpus?

• Turns out a single absolute discounting works for
almost all n-grams
* Most mass taken from low counts
* Doesn’t effect high counts much

• !"#$ %& %&'(= * +,-.,+, '0
*(+,-.)

+ λ(%&'()!(%&)

18

COMP90042 W.S.T.A. (S1 2019) L9

Continuation counts

• When backing-off or interpolating, raw counts can be
fairly unreliable
* ! "#$%$&' (%' = ? will interpolate with !("#$%$&')
* Zealand has high counts, but only appears after New

• Don’t want to assign it much probability when New not present

• Instead, use frequency of contexts in which word
appears
* For many words, closely related to total count

* But just 1 for Zealand
-.&/0&1$/0.&_-.1&/ 34 = | 6: -.1&/ 6, 34 > 0 |

19

COMP90042 W.S.T.A. (S1 2019) L9

Throwing it all together

!"#(%&|%&(), %&(+) =
max 0, 1"# %&(), %&(+, %& − 3

1"# %&(), %&(+

+ λ %&(), %&(+ !"#(%&|%&(+)

CKN is	a	continuation	count,	except		for	the	highest	n-gram	
order:	we	use	a	regular	count	instead.

λ %&(), %&(+ = L

MNO PQRS,PQRT
|{%: 1"# %&(), %&(+ , % > 0}|

20

COMP90042 W.S.T.A. (S1 2019) L9

In practice

• Best Kneser-Ney version uses different discount
values for each n-gram order.

• Most used LMs use 5-grams as the max order but
higher order sometimes can be used if large amounts
of data are available.

21

COMP90042 W.S.T.A. (S1 2019) L9

Evaluation

• Extrinsic
* E.g. spelling correction, machine translation

• Intrinsic
* Perplexity on held-out test set

22

COMP90042 W.S.T.A. (S1 2019) L9

Perplexity

• Inverse probability of entire test set

* Normalized by number of words (including </s>)

• The lower the better

!! "#, "$, .. "% =
' 1
!("#, "$, .. "%)

equivalently

!! "#, "$, .. "% = 2,
-./0 1 23, 20, .. 2'

'

• Unknown (OOV) words a problem (omit)

23

COMP90042 W.S.T.A. (S1 2019) L9

Example perplexity scores

Shareghi, Petri, Haffari and
Cohn. Transactions of ACL,
2016.

construction load+query

10

100

1k

10k

100k

0.1 1.0 10.0 0.1 1.0 10.0
Memory [GiB]

Ti
m

e
[s

ec
]

CST on-the-fly
CST precompute

KenLM (trie)
KenLM (probing)

SRILM

Figure 6: Memory consumption and total runtime for the
CST with and without precomputation, KenLM (trie), and
SRILM (default) with m 2 [2, 10], while we also in-
clude m = 1 for CST methods. Trained on the Europarl
German corpus and tested over the bottom 1M sentences
from German Common Crawl corpus.

our benchmarking experiments we used the bottom
1M sentences (not used in training) of German Com-
man Crawl corpus. We used the preprocessing script
of Buck et al. (2014), then removed sentences with
 2 words, and replaced rare words12 c 9 in the
training data with a special token. In our character-
level experiments, we used the training and test data
of the benchmark 1-billion-words corpus (Chelba et
al., 2013).

Small data: German Europarl First, we com-
pare the time and memory consumption of both the
SRILM and KenLM toolkits, and the CST on the
small German corpus. Figure 6 shows the memory
usage for construction and querying for CST-based
methods w/o precomputation is independent of m,
but they grow substantially with m for the SRILM
and KenLM benchmarks. To make our results com-
parable to those reported in (Shareghi et al., 2015)
for query time measurements we reported the load-
ing and query time combined. The construction cost
is modest, requiring less memory than the bench-
mark systems for m � 3, and running in a sim-

12Running with the full vocabulary increased the memory re-
quirement by 40% for construction and 5% for querying with
our model, and 10% and 30%, resp. for KenLM. Construction
times for both approaches were 15% slower, but query runtime
was 20% slower for our model versus 80% for KenLM.

size (M) perplexity

tokens m = 2 m = 3 m = 5 m = 7 m = 10 m = 1
EN 6470 321.6 183.8 154.3 152.7 152.5 152.3
ES 6276 231.3 133.2 111.7 109.7 109.3 109.2
FR 6100 215.8 109.2 85.2 83.1 82.6 82.4
DE 5540 588.3 336.6 292.8 288.1 287.8 287.8

Table 2: Perplexities on English, French, German new-
stests 2014, and Spanish newstest 2013 when trained on
32GiB chunks of English, Spanish, French, and German
Common Crawl corpus.

ilar time13 (despite our method supporting queries
of unlimited size). Precomputation adds to the con-
struction time, which rose from 173 to 299 seconds,
but yielded speed improvements of several orders of
magnitude for querying (218k to 98 seconds for 10-
gram). In querying, the CST-precompute method
is 2-4⇥ slower than both SRILM and KenLM for
large m � 5, with the exception of m = 10
where it outperforms SRILM. A substantial fraction
of the query time is loading the structures from disk;
when this cost is excluded, our approach is between
8-13⇥ slower than the benchmark toolkits. Note that
perplexity computed by the CST closely matched
KenLM (differences 0.1).

Big Data: Common Crawl Table 2 reports the
perplexity results for training on 32GiB subsets of
the English, Spanish, French, and German Common
Crawl corpus. Note that with such large datasets,
perplexity improves with increasing m, with sub-
stantial gains available moving above the widely
used m = 5. This highlights the importance of our
approach being independent from m, in that we can
evaluate for any m, including 1, at low cost.

Heterogeneous Data To illustrate the effects of
domain shift, corpus size and language model capac-
ity on modelling accuracy, we now evaluate the sys-
tem using a variety of different training corpora. Ta-
ble 3 reports the perplexity for German when train-
ing over datasets ranging from the small Europarl up

13For all timings reported in the paper we manually flushed
the system cache between each operation (both for construction
and querying) to remove the effect of caching on runtime. To
query KenLM, we used the speed optimised populate method.
(We also compare the memory optimised lazy method in Fig-
ure 7.) To train and query SRILM we used the default method
which is optimised for speed, but had slightly worse memory
usage than the compact method.

construction load+query

1

10

100

1 4 8 16 32 1 4 8 16 32
Input Size [GiB]

M
em

or
y

[G
iB

]

construction load+query

100

1k

10k

1 4 8 16 32 1 4 8 16 32
Input Size [GiB]

Ti
m

e
[s

ec
on

ds
]

m
2gram
3gram
4gram
5gram
8gram
10gram

method
ken (pop.)
ken (lazy)
csta) b) c) d)

Figure 7: Memory and runtime statistics for CST and KenLM for construction and querying with different amounts
of German Common Crawl training data and different Markov orders, m. We compare the query runtimes against the
optimised version of KenLM for memory (lazy) and speed (populate). For clarity, in the figure we only show CST
numbers for m = 10; the results for other settings of m are very similar. KenLM was trained to match the construction
memory requirements of the CST-precompute method.

unit time (s) mem (GiB) m = 5m = 10m = 20m = 1
word 8164 6.29 73.45 68.66 68.76 68.80
character 17 935 18.58 3.93 2.69 2.37 2.33

Table 4: Perplexity results for the 1 billion word bench-
mark corpus, showing word based and character based
MKN models, for different m. Timings and peak mem-
ory usage are reported for construction. The word
model computed discounts and precomputed counts up
to m̄, m̂ = 10, while the character model used thresholds
m̄, m̂ = 50. Timings measured on a single core.

for the word model, which may not be a good pa-
rameterisation for m > m̄.

Despite the character based model (implicitly)
having a massive parameter space, estimating this
model was tractable with our approach: the con-
struction time was a modest 5 hours (and 2.3 hours
for the word based model.) For the same dataset,
Chelba et al. (2013) report that training a MKN 5-
gram model took 3 hours using a cluster of 100
CPUs; our algorithm is faster than this, despite only
using a single CPU core.18 Queries were also fast:
0.72-0.87ms and 15ms per sentence for word and
character based models, respectively.

6 Conclusions

We proposed a language model based on com-

pressed suffix trees, a representation that is highly
18Chelba et al. (2013) report a better perplexity of 67.6, but

they pruned the training vocabulary, whereas we did not. Also
we use a stringent treatment of OOV, following Heafield (2013).

compact and can be easily held in memory, while
supporting queries needed in computing language
model probabilities on the fly. We presented several
optimisations to accelerate this process, with only
a modest increase in construction time and memory
usage, yet improving query runtimes up to 2500⇥.
In benchmarking against the state-of-the-art KenLM
package on large corpora, our method has superior
memory usage and highly competitive runtimes for
both querying and training. Our approach allows
easy experimentation with high order language mod-
els, and our results provide evidence that such high
orders most useful when using large training sets.

We posit that further perplexity gains can be re-
alised using richer smoothing techniques, such as a
non-parametric Bayesian prior (Teh, 2006; Wood et
al., 2011). Our ongoing work will explore this av-
enue, as well as integrating our language model into
the Moses machine translation system, and improv-
ing the querying time by caching the lower order
probabilities (e.g., m < 4) which we believe can
improve query time substantially while maintaining
a modest memory footprint.

Acknowledgements

This research was supported by the Australian Re-
search Council (FT130101105), National ICT Aus-
tralia (NICTA) and a Google Faculty Research
Award.

24

COMP90042 W.S.T.A. (S1 2019) L9

Generated texts

• Language models can also be used to generate texts

• Given a initial word, sample the next word according to
the probability distribution defined by the language
model.

This shall forbid it should be branded, if renown made it
empty

They also point to ninety nine point six billion dollars from
two hundred four oh three percent of the rates of interest
stores as Mexico and Brazil on market conditions

25

COMP90042 W.S.T.A. (S1 2019) L9

A final word

• N-gram language models are a structure-neutral way
to capture the predictability of language

• Information can be derived in an unsupervised
fashion, scalable to large corpora

• Require smoothing to be effective, due to sparsity

26

COMP90042 W.S.T.A. (S1 2019) L9

Reading

• E18 Chapter 6 (skip 6.3)

