IR Evaluation and re-ranking

COMP90042 Lecture 6

Overview

- Evaluation
- Re-ranking documents
- Learning-to-Rank

Efficiency vs effectiveness

- Up until now we looked at how to make an inverted index
 - * Space efficient (Compression)
 - Fast (Top-K query processing)
- Today we will investigate the **quality** of returned results for a search query:
 - * How do you measure quality?
 - * Ways to improve result quality.

Evaluating effectiveness

- Hard to characterise the quality of a system's results
 - * a subjective problem, depends on the user's information need and how well the results meet that need
 - query is not the information need itself, but an expression thereof
- Obvious evaluation method: human judgements
 - directly measure effectiveness in user studies; for reported satisfaction, completion of tasks, ...
 - but too expensive and slow, especially when tuning parameters of the system (e.g., flavour of TF*IDF, use of stopwords, etc...)

Automatic evaluation

- Make simplifying assumptions
 - * retrieval is ad-hoc
 - query performed only once, and with no prior knowledge of the user or their behavior
 - * effectiveness based on relevance
 - each document is either relevant or irrelevant to information need (often binary, sometimes also multiple grades of relevance)
 - relevance of documents are independent from others (no consideration of redundancy)
- Effectiveness is a function of the relevance of documents returned by the system

Test collections

- Several reusable test collections constructed for IR evaluation, e.g., for TREC competitions; comprising
 - * corpus of documents
 - set of *queries*, sometimes including long-form elaboration of information need
 - relevance judgements (*qrels*), a human judgement of whether the document is relevant to the information need in the given query.
- Typically not all documents have *qrels*, collection is simply too big and most are likely to be irrelevant.

Example from TREC 5

 $\langle num \rangle$ Number: 252

 $\langle title \rangle$ Topic: Combating Alien Smuggling

 $\langle desc \rangle$ Description: What steps are being taken by governmental or even private entities world-wide to stop the smuggling of aliens.

 $\langle narr \rangle$ Narrative: To be relevant, a document must describe an effort being made (other than routine border patrols) in any country of the world to prevent the illegal penetration of aliens across borders.

		_				
Topic	Docid	Rel		Topic	Docid	Score
252	AP881226-0140	1		252	CR93H-9548	0.5436
252	AP881227-0083	0		252	CR93H-12789	0.4958
252	CR93E-10038	0		252	CR93H-10580	0.4633
252	CR93E-1004	0		252	CR93H-14389	0.4616
252	CR93E-10211	0		252	AP880828-0030	0.4523
252	CR93E-10529	1		252	CR93H-10986	0.4383

Qrels

Runfile

Example relevance vector

 Based on retrieval run, calculate binary vector indicating relevance for each ranked document

Retrieval run					
Docid	Score				
CR93H-9548	0.5436				
CR93H-12789	0.4958				
CR93H-10580	0.4633				
CR93H-14389	0.4616				
AP880828-0030	0.4523				
CR93H-10986	0.4383				

Docid	Rel
AP880828-0030	0
AP881226-0140	1
AP881227-0083	0
CR93H-14389	0
CR93H-9548	1
CR93H-10580	0
CR93H-10986	1
CR93H-12789	0

Qrels

Relevance vector

 $\langle 1,0,0,0,0,1,\ldots\rangle$

Relevance measures

- How to map relevance vector to a number?
- Natural candidates are precision & recall
 - * but recall is hard to calculate (why?); and
 - * how to deal with ranked outputs?
- Mainly use precision oriented metrics:
 - * precision @ k: compute precision using only ranks 1 .. k
 - * average precision: take average over prec@k for each k where rank k item is relevant; measure becomes rank sensitive
 - Mean Average Precision (MAP): AP averaged across multiple queries

Average precision

Relevance vector

- Precision
 - * P@1 = 1/1P@2 = ½ P@3 = 1/3 P@4 = ¼
 P@5 = 1/5P@6 = 2/6 P@7 = 2/7 P@8 = 3/8
 P@9 = 3/9P@10 = 3/10
- AP (average precision) = 1/3 *(P@1 + P@6 + P@8) = 0.57 (assuming only 3 docs are relevant, giving 1/3 scale)
- Results then averaged over all queries in test collection (mean average precision, MAP).
- Many more measures exist!

Reciprocal rank

- Reciprocal rank = 1 / rank of first correct answer
- Examples:
- Take mean over collection (MRR)

* e.g., for above two queries, mean(1, 0.33) = 0.67

Insensitive to results after first correct answer

Utility based metrics

- Example: Rank-biased precision (Moffat & Zobel 2008)
- Idea: User will pay \$1 for each relevant answer but nothing for irrelevant answers. Models utility gained by searcher.
- User processes list top-to-bottom with persistence (probability) P
- User always looks at first result. User looks at second result with probability P. Third result: P², P³, P⁴...
- Search engine gets paid based on how much relevant documents it provides until the user stops

Rank-biased precision

RBP Formula (r_i is the ith element of the relevance vector of length d)

$$RBP = (1-p) \times \sum_{i=1}^{a} r_i \times p^{i-1}$$

- User Model:
- Patient user: p = 0.95, Impatient user: p=0.50

RBP example

Relevance vector:
 <1,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0>

Document	p = 0.50	p = 0.80	p = 0.95
1	1.0000	1.0000	1.0000
2	0.5000	0.8000	0.9500
6	0.0313	0.3277	0.7738
11	0.0010	0.1074	0.5987
17	0.0000	0.0281	0.4401
Total	1.5322	2.2632	3.7626
$\times (1-p)$	0.7661	0.4526	0.1881

Effectiveness in practice

- In addition to explicit human judgements we also look at query logs and click logs
- For a given query and a specific result page, which result did users click on?
- After clicking, did they come back and click on other results?
- Indirect relevance feedback!

Improving effectiveness

- Suppose, we find that for some queries, users click on the second result instead of the first result
- How do we incorporate this information into our similarity metric (BM25?) to rank these results higher?
- Construct (learn!) a similarity metric automatically from training data (queries, click data, documents) to better rank documents by relevance

Multi-stage retrieval

- Use a cheap, fast, simple similarity metric (such as BM25) to retrieve an initial set of relevant documents (top-k retrieval)
- For those k documents, apply a Machine Learning algorithm which uses more features to re-rank the initial set of k documents
- Why not apply Machine Learning to rank all documents? Expensive!

Learning to Rank

 Given queries, m (k before) documents documents for each query, click data (or human judgements) use Machine Learning techniques to rank documents

Taken from: Tie-Yan Liu: Learning to Rank for Information Retrieval

Learning to Rank II

- Learn a ranking model that can rank the list of k documents for an unknown query
- Use training data consisting of tuples <q,d_i,u,r_i> which represent the query q, the k documents (d₁,...,d_k), user u and Relevance Vector R (r₁,...,r_k),
- Learn to combine features representing x =<q,d_i,u> to to predict r_i
- Challenges:
 - Finding the right features representing x =<q,d,u>
 - Defining the objective that we want to optimize that corresponds to ranking documents

User features

- What kind of documents has the user been looking for?
- What kind of links is the user clicking on?
- How long does the user stay on a URL before returning?
- What are your friends searching/clicking on?
- Location
- Native Language
- Age

Document features

- Various tf/idf features (for example document lengths)
- Number of slashes in URL
- Main topics (see Topic Models!)
- Length of URL
- Pagerank / Number of Inlinks or Outlinks
- How long do users stay on the URL before returning to search engine (dwell time)
- Quality score (spam or no spam?)
- Navigational vs Informational
- For a given query Q, how often was document D first click, last click, only click?
- Users that come view are documents come from the same location?

Query Features

- Number of queries terms
- Popularity of the query (query log)
- Time sensitive? "World Cup"
- Number of matching documents
- BM25 score distribution

Learning to rank Objectives

- Point-wise objective
 - * Given a query q, a document d_i , and a user u, find a function $f(q,d_i,u)$ that predicts r_i for document d_i .
 - * Ask the user: **How relevant is** d_i?
 - Relevance judgement might be binary (yes or no) or multigraded relevance (very relevant, relevant, not relevant)
- Pair-wise objective
 - * Given a query q, user u, and two documents d_1 and d_2 predict the correct relative order of d_1 and d_2
 - * Ask the user: Which of these two documents is more relevant?
- List-wise objective ...

Point-wise objective

- Input: feature vectors x_i for each <q,d_i,u> tuple
- Learn model $y = f(x_i)$ that outputs real numbers
- Rank documents by sorting based on $y = f(x_i)$
- To "learn a model" we define an objective that we try to minimize. This is usually referred to as a loss function
- Here: the output *y* should correspond to relevance!
- How do we do this?

Point-wise – Algorithm Sketch

- Train classifier that can predict r_i
- Train model that can compute:

$$P(r_i = \text{relevant}|x_i)$$

- Sort documents by the probability of being relevant
- Multiple classes: Assign classes a value and compute expectation (e.g. -2 highly non relevant, 2 highly relevant)

Pair-wise — Sketch

- Train classifier to predict if $r_u < r_v$ based on pairs of training documents with the same query
- **RankNet** framed as $P(y_{u,v}|x_u, x_v) = \frac{1}{1+e^{\{f(x_u)-f(x_v)\}}}$
 - * where f is a scoring function, x_u, x_v vectors representing the two documents, and $y_{u,v}$ is a binary value $1 \rightarrow u$ better than v; $0 \rightarrow v$ better than u
 - * setting $f(x) = \theta \cdot x$ recovers logistic regression with pairwise feature vectors $x_u - x_v$
- To re-rank a test query, sort by value of f(x)

Learning to Rank in Practice

- The secret sauce behind many search engines (and other websites such as Amazon)
- Rank high and make lots of money
- Use many features to create complex personalized, localized ranking models
- Use A/B testing to test new ranking models
- SEO Reverse engineer the features used to rank higher

Summary

- Evaluation using relevance judgements
- Precision@k, (M)AP, (M)RR, RBP evaluation metrics
- Use BM25 as a first step in multi-stage retrieval system
- Use complex trained ranking models to re-rank the original BM25 ranking
- Many features and training methods exists

Reading

- Reading
 - * MRS Chapter 8
 - * Tie-Yan Liu: Learning to Rank for Information Retrieval, Section 1.3, 2011, ISBN 978-3-642-14266-6 (<u>ebook</u>)
- Optional extras
 - * Hang Li: Learning to Rank for Information Retrieval and Natural Language Processing, Morgan & Claypool, 2015
 - * Alistair Moffat, Justin Zobel: Rank-Biased Precision for Measurement of Retrieval Effectiveness. TOIS 2008