COMP90042 LECTURE 3

LEXICAL SEMANTICS
SENTIMENT ANALYSIS REVISITED

- Bag of words, kNN classifier. Training data:
 - “This is a good movie.” → 😊
 - “This is a great movie.” → 😊
 - “This is a terrible film.” → 😞
 - “This is a wonderful film.” → ?

- pollev.com/wsta
 - Text “WSTA” to 0 427 541 357, then “P” or “N”.

COPYRIGHT 2018, THE UNIVERSITY OF MELBOURNE
SENTIMENT ANALYSIS REVISITED

› “This is a wonderful film.” → 😞

› Which word is causing the wrong prediction?

› pollev.com/wsta

› Text “WSTA” to 0 427 541 357, then “THIS”, “IS”, “A”, “WONDERFUL” or “FILM”.

COPYRIGHT 2018, THE UNIVERSITY OF MELBOURNE
SENTIMENT ANALYSIS REVISITED

- “This is a wonderful film.” → 😞

- Two problems:
 - The model does not know that “movie” and “film” are synonyms. Since “film” appears only in negative examples the model learns that it is a negative word.
 - “wonderful” is not in the vocabulary (OOV – Out-Of-Vocabulary).

- We need to add word semantics to the model.
SENTIMENT ANALYSIS REVISITED

‣ “This is a great movie.” → 😊

‣ “This is a wonderful film.” → ?

‣ Comparing words using a BOW approach will not work. How to make sure we compare word senses instead?

‣ Solution: add this information explicitly through a lexical database.
WORD SEMANTICS

- Lexical semantics (this lecture)
 - How the meanings of words connect to one another in our minds.
 - Manually constructed resources: lexicons, thesauri, ontologies, etc.

- Distributional semantics (tomorrow)
 - How words relate to each other in the text.
 - Automatically created resources from corpora.
Bank (noun):

1. A financial institution; a building where a financial institution offers services; a repository; a container for holding money
2. Land sloping down to a body of water

- Bank has many senses (more than just these)
- 1 and 2 are homonyms
 - Considered different lexical items by lexicographers
- 1 shows polysemy
 - Related senses of the same lexical item
BASIC LEXICAL RELATIONS

- Synonyms (same) and antonyms (opposite/complementary)
- Hypernyms (generic), hyponyms (specific)
- Holonyms (whole) and meronyms (part)
WORDNET

- A database of lexical relations
- English WordNet includes ~120,000 nouns, ~12,000 verbs, ~21,000 adjectives, ~4,000 adverbs
- WordNets available in most major languages (www.globalwordnet.org)
- English version freely available (accessible via NLTK)
The nodes of WordNet are not words, but meanings.

There are represented by sets of synonyms, or *synsets*.

```python
>>> nltk.corpus.wordnet.synsets('bank')
[Synset('bank.n.01'), Synset('depository_financial_institution.n.01'), Synset('bank.n.03'), Synset('bank.n.04'), Synset('bank.n.05'), Synset('bank.n.06'), Synset('bank.n.07'), Synset('savings_bank.n.02'), Synset('bank.n.09'), Synset('bank.n.10'), Synset('bank.v.01'), Synset('bank.v.02'), Synset('bank.v.03'), Synset('bank.v.04'), Synset('bank.v.05'), Synset('bank.v.07'), Synset('deposit.v.02'), Synset('banking_concern', Synset('banking_company'))]
```

```python
>>> nltk.corpus.wordnet.synsets('bank')[0].definition()
u'sloping land (especially the slope beside a body of water)'
```

```python
>>> nltk.corpus.wordnet.synsets('bank')[1].lemma_names()
[u'depository_financial_institution', u'bank', u'banking_concern', u'banking_company']
```
LEXICAL RELATIONS IN WORDNET

- Connections between nodes are lexical relations
- Including all the major ones mentioned earlier

```python
>>> print nltk.corpus.wordnet.lemmas('sister')[0].antonyms()
[Lemma('brother.n.01.brother')]

>>> nltk.corpus.wordnet.synsets('relative')[0].hypernyms()
[Synset('person.n.01')]

>>> nltk.corpus.wordnet.synsets('body')[0].part_meronyms()
[Synset('arm.n.01'), Synset('articulatory_system.n.01'), Synset('body_substance.n.01'), Synset('cavity.n.04'), Synset('circulatory_system.n.01'), Synset('crotch.n.02'), Synset('digestive_system.n.01'), Synset('endocrine_system.n.01'), Synset('head.n.01'), Synset('leg.n.01'), Synset('lymphatic_system.n.01'), Synset('musculoskeletal_system.n.01'), Synset('neck.n.01'), Synset('nervous_system.n.01'), Synset('pressure_point.n.01'), Synset('respiratory_system.n.01'), Synset('sensory_system.n.02'), Synset('torso.n.01'), Synset('vascular_system.n.01')]```
WORD SIMILARITY WITH PATHS

- Want to go beyond specific lexical relations
  - E.g. *money* and *nickel* are related, despite no direct lexical relationship
- Given WordNet, find similarity based on path length in hypernym/hyponym tree

\[
simpath(c_1, c_2) = \frac{1}{\text{pathlen}(c_1, c_2)}
\]

- \( \text{simpath}(\text{nickel}, \text{coin}) = \frac{1}{2} = .5 \)
- \( \text{simpath}(\text{nickel}, \text{currency}) = \frac{1}{4} = .25 \)
- \( \text{simpath}(\text{nickel}, \text{money}) = \frac{1}{6} = .17 \)
- \( \text{simpath}(\text{nickel}, \text{Richter scale}) = \frac{1}{8} = .13 \)
BEYOND PATH LENGTH

- Problem: edges vary widely in actual semantic distance
  - Much bigger jumps near top of hierarchy
- Solution 1: include depth information (Wu & Palmer)
  - Use path to find lowest common subsumer (LCS)
  - Compare using depths

$$\text{simwup}(c_1, c_2) = \frac{2 \times \text{depth}(\text{LCS}(c_1, c_2))}{\text{depth}(c_1) + \text{depth}(c_2)}$$

$$\text{simwup}(\text{nickel}, \text{money}) = \frac{2 \times 2}{3 + 6} = .44$$

$$\text{simwup}(\text{nickel}, \text{Richter scale}) = \frac{2 \times 1}{3 + 6} = .22$$
INFORMATION CONTENT

- But count of edges is still poor semantic distance metric
- Solution 2: include statistics from corpus (Resnik; Lin)
  - $P(c)$: probability that word in corpus is instance of concept $c$
    \[
    P(c) = \frac{\sum_{w \in \text{words}(c)} \text{count}(w)}{N}
    \]
  - information content (IC)
    \[
    IC(c) = -\log P(c)
    \]
  - Lin distance
    \[
    \text{simlin}(c_1, c_2) = \frac{2 \times IC(\text{LCS}(c_1, c_2))}{IC(c_1) + IC(c_2)}
    \]
“This is a great movie.” → 😊

“This is a wonderful film.” → ❓

Comparing words using WordNet paths work well if our classifier is based on word similarities (such as kNN)

But what if we want sense as a general feature representation, so we can employ other classifiers?

Solution: map words in text to senses in WordNet explicitly.
WORD SENSE DISAMBIGUATION

- Hacky (but popular) “solutions”:
  - Assume the most popular sense
  - For word similarity, take minimum across senses

- The proper (but difficult) solution: Word Sense Disambiguation

- Good WSD potentially useful for many tasks in NLP
  - In practice, often ignored because good WSD too hard
  - Active research area
SUPERVISED WSD

- Apply standard machine classifiers
- Feature vectors typically words and syntax around target
  - But context is ambiguous too!
  - How big should context window be? (typically very small)
- Requires sense-tagged corpora
  - E.g. SENSEVAL, SEMCOR (available in NLTK)
  - Very time consuming to create!
LESS SUPERVISED APPROACHES

- Lesk: Choose sense whose dictionary gloss from WordNet most overlaps with the context

- Yarowsky: Bootstrap method
  - Create a small seed training set
    - *plant* (factory vs. vegetation): *manufacturing plant, plant life*
  - Iteratively expand training set with untagged examples
    - Train a statistical classifier on current training set
    - Add confidently predicted examples to training set
  - Uses *one sense per collocation, one sense per document*

- Graph methods in WordNet
A lexical data base of *frames*, typically prototypical situations

- E.g. “apply_heat” frame

Includes lists of *lexical units* that evoke the frame

- E.g. *cook*, *fry*, *bake*, *boil*, etc.

Lists of *semantic roles* or *frame elements*

  - E.g. “the cook”, “the food”, “the container”, “the instrument”

Semantic relationships among frames

  - “apply_heat” is Causitive of “absorb_heat”, is Used by “cooking_creation”
OTHER DATABASES - LEXICONS

- General Inquirer lexicon
  - Large set of words tagged for 150+ categories
  - Tags for psychological, social, and topic distinctions
  - Best known in NLP for positive/negative tags

- Linguistic Inquiry and Word Count (LIWC) lexicons
  - Largest and most well known text analysis tool
  - Major lexical categories: affect; social; cognitive processes; perpetual processes; biological processes; core drives and needs; time orientation; relativity; personal concerns; informal speech
OTHER USEFUL LEXICONS IN NLTK

- Names: List of male and female names
- Gazetteer List: lists of cities and countries
  - Comprehensive lists of locations at www.geonames.org
- WordList: lists of words for various languages
- Stopwords: list of stopwords for various languages
- Cmudict: a pronunciation dictionary
MULTIWORD LEXICONS

▸ Many lexical items involve multiple words
  ▸ Semantically non-compositional (United States ≠ United + States)
  ▸ Sometimes non-contiguous (take him/her/them for a ride)

▸ Both WordNet and FrameNet contain multiword expressions (MWEs)
  ▸ But far from comprehensive

▸ In fact, no comprehensive collection of MWEs exists
  ▸ MWE/collocation identification is a classic NLP task

▸ See http://www.cs.cmu.edu/~ark/LexSem/ for a good collection taken from various sources
MOVING ON TO THE CORPUS

- Manually-tagged lexical resources an important starting point for text analysis

- But much modern work attempts to derive semantic information directly from corpora, without human intervention

- Let’s add some distributional information
FURTHER READING

- JM3 17.1-17.3 (lexical semantics and Word/FrameNet)
- JM3 17.4 / 17.9 (WSD and word similarity)