
Indexcompressionand
efficientqueryprocessing

COMP90042 LECTURE 3, THE UNIVERSITY OF MELBOURNE

by

Matthias Petri

Tue 12/3/2019

Index compression 1/37

Indexcompression

Inverted Index - Recap

Index compression 2/37

term t ft Postings list for t

and 6 〈1, 6, 7, 8, 9, 12〉 , 〈1, 2, 1, 3, 1, 2〉

big 3 〈2, 5, 42〉 , 〈1, 1, 1〉

old 1 〈32〉 , 〈4〉

in 7 〈2, 3, 5, 6, 8, 14, 25〉 , 〈1, 1, 4, 1, 5, 3, 1〉

the 52 〈1, 2, 3, 4, 5, 7, 8, 9, . . .〉 , 〈10, 21, 10, 42, 12, 14, 12, 4, . . .〉

night 4 〈1, 12, 13, 14〉 , 〈2, 2, 1, 3〉

house 5 〈6, 21, 32, 33, 43〉 , 〈2, 3, 4, 2, 1〉

sleep 3 〈1, 51, 53〉 , 〈1, 2, 3〉

where 4 〈1, 3, 4, 6〉 , 〈1, 1, 2, 1〉

Index Compression -Motivation

Index compression 3/37

Inverted Index size for 420GB of web data (tiny)

Documents 25Million
Terms 35Million
Postings 6 Billion
Uncompressed Storage Cost ≈ 32 GB

Inverted Index mostly stored in RAM (query performance)
Companies run 1000s of machines to answer search
queries
Space reduction can lead to substantial cost reductions
Saving 5%means shutting down 50/1000 machines!

Index compression

Index compression 4/37

Benefits of index compression:

Reduce storage requirements
Keep larger parts of the index in memory
Faster query processing

Example

A state-of-the-art inverted index of 25 million websites (420GB)
requires only 5GB (1.2%) and can answer queries in≈ 10
milliseconds.

32GB→ 5GB corresponds to a 700% space reduction!

Compression Principles

Index compression 5/37

Compressibility is bounded by the information content of
a data set

Information content of a text T is a characterized by its
Entropy H:

H(T) = −
∑
s∈Σ

fs
n
log2

fs
n

where fs is the frequency of symbol s in T and n is the
length of T .

For example, H(abracadabra) = 2.040373 bits with
n = 11, fa = 5, fb = 2, fc = 1, fd = 1, fr = 2.

Intuition: Spend less bits on items that occur often.

Posting list Compression

Index compression 6/37

Minimize storage costs

Fast sequential access

Support GEQ(x) operation: Return the smallest item in
the list that is greater or equal to x

Posting list Compression - Concepts

Index compression 7/37

Postings list corresponds to an increasing sequence of
integers
Each integer can be in [1,N] requiring log2(N) bits
Idea: Gaps between two adjacent integers can bemuch
smaller

the ids: 25 26 29 … 12345 12347
gaps: 25 1 3 … 1 2

house ids: 5123 5234 5454 5591 …
gaps: 5123 1 220 137 …

aeronaut ids: 251235 251239 251239
gaps: 251235 4 34

Variable Byte Compression

Index compression 8/37

Idea
Use variable number of bytes to represent integers. Each byte
contains 7 bits “payload” and one continuation bit.

Examples

Number Encoding

824 00111000 10000110
5 10000101

Storage Cost

Number Range Number of Bytes

0− 127 1
128− 16383 2
16384− 2097151 3

Variable Byte Compression - Example

Index compression 9/37

Compress number 512312 or 1111101000100111000 in binary.

Howmany bytes?

11111|0100010|0111000. 3 bytes!
How do we compress the number?

1. Extract the lowest 7 bits.

512312 mod 128 = 56 = 0111000

2. Discard lowest 7 bits.

512312÷ 128 = 4002 (or 512312 >> 7)

3. Extract the lowest 7 bits.

4002 mod 128 = 34 = 0100010

4. Discard lowest 7 bits.

4002÷ 128 = 31 (or 4002 >> 7)

5. Number smaller than 128. Write in lowest 7 bits and set
top bit to 1. 31 = 11111 So we write 10011111which is
31 + 128 = 159

Variable Byte Compression - Example

Index compression 9/37

Compress number 512312 or 1111101000100111000 in binary.

Howmany bytes? 11111|0100010|0111000. 3 bytes!

How do we compress the number?

1. Extract the lowest 7 bits.

512312 mod 128 = 56 = 0111000

2. Discard lowest 7 bits.

512312÷ 128 = 4002 (or 512312 >> 7)

3. Extract the lowest 7 bits.

4002 mod 128 = 34 = 0100010

4. Discard lowest 7 bits.

4002÷ 128 = 31 (or 4002 >> 7)

5. Number smaller than 128. Write in lowest 7 bits and set
top bit to 1. 31 = 11111 So we write 10011111which is
31 + 128 = 159

Variable Byte Compression - Example

Index compression 9/37

Compress number 512312 or 1111101000100111000 in binary.

Howmany bytes? 11111|0100010|0111000. 3 bytes!
How do we compress the number?

1. Extract the lowest 7 bits.

512312 mod 128 = 56 = 0111000

2. Discard lowest 7 bits.

512312÷ 128 = 4002 (or 512312 >> 7)

3. Extract the lowest 7 bits.

4002 mod 128 = 34 = 0100010

4. Discard lowest 7 bits.

4002÷ 128 = 31 (or 4002 >> 7)

5. Number smaller than 128. Write in lowest 7 bits and set
top bit to 1. 31 = 11111 So we write 10011111which is
31 + 128 = 159

Variable Byte Compression - Example

Index compression 9/37

Compress number 512312 or 1111101000100111000 in binary.

Howmany bytes? 11111|0100010|0111000. 3 bytes!
How do we compress the number?
1. Extract the lowest 7 bits.

512312 mod 128 = 56 = 0111000
2. Discard lowest 7 bits.

512312÷ 128 = 4002 (or 512312 >> 7)

3. Extract the lowest 7 bits.

4002 mod 128 = 34 = 0100010

4. Discard lowest 7 bits.

4002÷ 128 = 31 (or 4002 >> 7)

5. Number smaller than 128. Write in lowest 7 bits and set
top bit to 1. 31 = 11111 So we write 10011111which is
31 + 128 = 159

Variable Byte Compression - Example

Index compression 9/37

Compress number 512312 or 1111101000100111000 in binary.

Howmany bytes? 11111|0100010|0111000. 3 bytes!
How do we compress the number?
1. Extract the lowest 7 bits.

512312 mod 128 = 56 = 0111000

2. Discard lowest 7 bits.

512312÷ 128 = 4002 (or 512312 >> 7)

3. Extract the lowest 7 bits.

4002 mod 128 = 34 = 0100010

4. Discard lowest 7 bits.

4002÷ 128 = 31 (or 4002 >> 7)

5. Number smaller than 128. Write in lowest 7 bits and set
top bit to 1. 31 = 11111 So we write 10011111which is
31 + 128 = 159

Variable Byte Compression - Example

Index compression 9/37

Compress number 512312 or 1111101000100111000 in binary.

Howmany bytes? 11111|0100010|0111000. 3 bytes!
How do we compress the number?
1. Extract the lowest 7 bits.

512312 mod 128 = 56 = 0111000
2. Discard lowest 7 bits.

512312÷ 128 = 4002 (or 512312 >> 7)
3. Extract the lowest 7 bits.

4002 mod 128 = 34 = 0100010

4. Discard lowest 7 bits.

4002÷ 128 = 31 (or 4002 >> 7)

5. Number smaller than 128. Write in lowest 7 bits and set
top bit to 1. 31 = 11111 So we write 10011111which is
31 + 128 = 159

Variable Byte Compression - Example

Index compression 9/37

Compress number 512312 or 1111101000100111000 in binary.

Howmany bytes? 11111|0100010|0111000. 3 bytes!
How do we compress the number?
1. Extract the lowest 7 bits.

512312 mod 128 = 56 = 0111000
2. Discard lowest 7 bits.

512312÷ 128 = 4002 (or 512312 >> 7)

3. Extract the lowest 7 bits.

4002 mod 128 = 34 = 0100010

4. Discard lowest 7 bits.

4002÷ 128 = 31 (or 4002 >> 7)

5. Number smaller than 128. Write in lowest 7 bits and set
top bit to 1. 31 = 11111 So we write 10011111which is
31 + 128 = 159

Variable Byte Compression - Example

Index compression 9/37

Compress number 512312 or 1111101000100111000 in binary.

Howmany bytes? 11111|0100010|0111000. 3 bytes!
How do we compress the number?
1. Extract the lowest 7 bits.

512312 mod 128 = 56 = 0111000
2. Discard lowest 7 bits.

512312÷ 128 = 4002 (or 512312 >> 7)
3. Extract the lowest 7 bits.

4002 mod 128 = 34 = 0100010
4. Discard lowest 7 bits.

4002÷ 128 = 31 (or 4002 >> 7)

5. Number smaller than 128. Write in lowest 7 bits and set
top bit to 1. 31 = 11111 So we write 10011111which is
31 + 128 = 159

Variable Byte Compression - Example

Index compression 9/37

Compress number 512312 or 1111101000100111000 in binary.

Howmany bytes? 11111|0100010|0111000. 3 bytes!
How do we compress the number?
1. Extract the lowest 7 bits.

512312 mod 128 = 56 = 0111000
2. Discard lowest 7 bits.

512312÷ 128 = 4002 (or 512312 >> 7)
3. Extract the lowest 7 bits.

4002 mod 128 = 34 = 0100010

4. Discard lowest 7 bits.

4002÷ 128 = 31 (or 4002 >> 7)

5. Number smaller than 128. Write in lowest 7 bits and set
top bit to 1. 31 = 11111 So we write 10011111which is
31 + 128 = 159

Variable Byte Compression - Example

Index compression 9/37

Compress number 512312 or 1111101000100111000 in binary.

Howmany bytes? 11111|0100010|0111000. 3 bytes!
How do we compress the number?
1. Extract the lowest 7 bits.

512312 mod 128 = 56 = 0111000
2. Discard lowest 7 bits.

512312÷ 128 = 4002 (or 512312 >> 7)
3. Extract the lowest 7 bits.

4002 mod 128 = 34 = 0100010
4. Discard lowest 7 bits.

4002÷ 128 = 31 (or 4002 >> 7)

5. Number smaller than 128. Write in lowest 7 bits and set
top bit to 1. 31 = 11111 So we write 10011111which is
31 + 128 = 159

Variable Byte Compression - Example

Index compression 9/37

Compress number 512312 or 1111101000100111000 in binary.

Howmany bytes? 11111|0100010|0111000. 3 bytes!
How do we compress the number?
1. Extract the lowest 7 bits.

512312 mod 128 = 56 = 0111000
2. Discard lowest 7 bits.

512312÷ 128 = 4002 (or 512312 >> 7)
3. Extract the lowest 7 bits.

4002 mod 128 = 34 = 0100010
4. Discard lowest 7 bits.

4002÷ 128 = 31 (or 4002 >> 7)
5. Number smaller than 128. Write in lowest 7 bits and set

top bit to 1. 31 = 11111 So we write 10011111which is
31 + 128 = 159

Variable Byte Compression - Example

Index compression 9/37

Compress number 512312 or 1111101000100111000 in binary.

Howmany bytes? 11111|0100010|0111000. 3 bytes!
How do we compress the number?
1. Extract the lowest 7 bits.

512312 mod 128 = 56 = 0111000
2. Discard lowest 7 bits.

512312÷ 128 = 4002 (or 512312 >> 7)
3. Extract the lowest 7 bits.

4002 mod 128 = 34 = 0100010
4. Discard lowest 7 bits.

4002÷ 128 = 31 (or 4002 >> 7)
5. Number smaller than 128. Write in lowest 7 bits and set

top bit to 1. 31 = 11111 So we write 10011111which is
31 + 128 = 159

Variable Byte - Algorithm

Index compression 10/37

Encoding

1: function ENCODE(x)
2: while x >= 128 do
3: WRITE(x mod 128)
4: x = x ÷ 128
5: endwhile
6: WRITE(x + 128)
7: end function

Decoding

1: function DECODE(bytes)
2: x = 0, s = 0
3: y =READBYTE(bytes)
4: while y < 128 do
5: x = x ^ (y << s)
6: s = s+ 7
7: y =READBYTE(bytes)
8: endwhile
9: x = x ^ ((y − 128) << s)

10: return x
11: end function

OptPForDelta Compression

Index compression 11/37

Idea
Group k gaps and encode using fixed number of bits. Encode
numbers> 2b separately as an exception. Pick b “optimally” for
each block so there are≈ 10% exceptions.

Example k = 8

[1 4 7 2 4 5 123 6] [3 4 755 15 12 1 8 4]
b=3 b=4

Encode [1 4 7 2 4 5 123 6] as:

b = 3, #e = 1, epos = [6] 1 4 7 2 4 5 6 123

header content exceptions

16 bit 21 bit 8 bit

Decompression Speeds/SpaceUsage

Index compression 12/37

Algorithm Space Speed
[bits/int] [Million Integers/sec]

Uncompressed 32 ≈ 5400
Variable Byte 8.7 ≈ 680
OptPForDelta 4.7 ≈ 710
Simple-8b 4.8 ≈ 780
SIMD-BP128 11 ≈ 2300
...

...

Citation: Daniel Lemire, Leonid Boytsov: Decoding billions of
integers per second through vectorization. Softw., Pract. Exper.
45(1): 1-29 (2015)

CompressionOptimizations

Index compression 13/37

Commonly lists are split into blocks of 128 integers

Choose optimal compression for each block

Often, long lists (“the”) are representedmore efficiently
using bitvectors of size N

State-of-the-art implementations use SIMD Instructions
and bit-parallelism to increase decoding speed

List Compression - Fast Searching
(GEQ)

Index compression 14/37

Compress postings list in blocks of 128 integers at a time
For each block store an uncompressed sample value
representing the largest (or smallest) value in the block
Use sample values to efficiently seek to any position in
the postings list without decompressing everything

Operation GEQ(x) (Greater or Equal x):
Binary search over uncompressed sample values to find
destination block
Decompress destination block to determine final offset in
postings list

Postings Compression - Summary

Index compression 15/37

Compress increasing integer sequences

Support iterating and searching the compressed
sequence

Store gaps between adjacent numbers

Different compression schemes provide different
time-space tradeoffs

Efficient Query Processing 16/37

EfficientQueryProcessing

Query Processing -Motivation

Efficient Query Processing 17/37

BM25 computation for one document:

SBM25Q,d =
∑
q∈Q

(k1 + 1)fd,q

k1
(
1− b+ b nd

navg

)
+ fd,q

· ln
(
N − FD,q + 0.5

FD,q + 0.5

)

Symbol Description
Q Multi set of query terms
q Query term in Q
d Evaluated document
fd,q Frequency of q in d (Term frequency)
N Number of documents in the collection
FD,q Number of documents containing q (Document frequency)
nd Length of document d
navg Average document length in the collection
k1, b Constants

Query Processing -Motivation II

Efficient Query Processing 18/37

BM25 computation speed:

1 2 3 4 6 8 12 14 16 20

100

200

300

400

500

Query Terms

Ti
m
e
fo
ro

ne
Ra

nk
Ev
al
ua

tio
n
[n
s]

Query Processing -Motivation III

Efficient Query Processing 19/37

Evaluating BM25 for one document takes 100
nanoseconds (Fast!).

Assume query matches 25million documents (term “the”
contained in almost all documents).

25million×100 nanoseconds ≈ 2.5 seconds.

Is waiting 2.5 seconds for a search query acceptable?

Query Processing -Motivation IV

Efficient Query Processing 20/37

Google A/B tested the effect of latency on user
satisfaction.1

Users are able to detect changes in latency by only 50ms.
Users searched less when results took longer to be
presented.
System abandonment was higher when results took
longer to be presented.
Average revenue per user dropped by≈ 4%when users
had delayed results.

Every 100ms boost in latency increases annual revenue
for Bing by≈ 0.6%.2

In 2015, a 1% improvement in revenue per user at Bing
was an increase of tens-of-millions of dollars per year.

1 E. Schurman and J. Brutlag. “Performance related changes and their user impact”. Velocity, 2009.
2 R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann. “Online controlled experiments at large scale”. In Proc.
KDD, pages 1168–1176, 2013.

Query Processing – Strategies

Efficient Query Processing 21/37

Scaling out: Why not just addmore servers?

Servers are somewhat cheap, but more servers means
more maintance, a more complex system, and larger
power costs.

Scaling up: Why not add better hardware?

Servers become expensive to purchase.
Cannot scale infinitely: diminishing returns.

Many improvements can still be made at the software
level.

Faster, cheaper algorithms for query processing.

Query Processing – Strategies

Efficient Query Processing 21/37

Scaling out: Why not just addmore servers?
Servers are somewhat cheap, but more servers means
more maintance, a more complex system, and larger
power costs.

Scaling up: Why not add better hardware?

Servers become expensive to purchase.
Cannot scale infinitely: diminishing returns.

Many improvements can still be made at the software
level.

Faster, cheaper algorithms for query processing.

Query Processing – Strategies

Efficient Query Processing 21/37

Scaling out: Why not just addmore servers?
Servers are somewhat cheap, but more servers means
more maintance, a more complex system, and larger
power costs.

Scaling up: Why not add better hardware?

Servers become expensive to purchase.
Cannot scale infinitely: diminishing returns.

Many improvements can still be made at the software
level.

Faster, cheaper algorithms for query processing.

Query Processing – Strategies

Efficient Query Processing 21/37

Scaling out: Why not just addmore servers?
Servers are somewhat cheap, but more servers means
more maintance, a more complex system, and larger
power costs.

Scaling up: Why not add better hardware?
Servers become expensive to purchase.

Cannot scale infinitely: diminishing returns.

Many improvements can still be made at the software
level.

Faster, cheaper algorithms for query processing.

Query Processing – Strategies

Efficient Query Processing 21/37

Scaling out: Why not just addmore servers?
Servers are somewhat cheap, but more servers means
more maintance, a more complex system, and larger
power costs.

Scaling up: Why not add better hardware?
Servers become expensive to purchase.
Cannot scale infinitely: diminishing returns.

Many improvements can still be made at the software
level.

Faster, cheaper algorithms for query processing.

Query Processing – Strategies

Efficient Query Processing 21/37

Scaling out: Why not just addmore servers?
Servers are somewhat cheap, but more servers means
more maintance, a more complex system, and larger
power costs.

Scaling up: Why not add better hardware?
Servers become expensive to purchase.
Cannot scale infinitely: diminishing returns.

Many improvements can still be made at the software
level.

Faster, cheaper algorithms for query processing.

Query Processing – Strategies

Efficient Query Processing 21/37

Scaling out: Why not just addmore servers?
Servers are somewhat cheap, but more servers means
more maintance, a more complex system, and larger
power costs.

Scaling up: Why not add better hardware?
Servers become expensive to purchase.
Cannot scale infinitely: diminishing returns.

Many improvements can still be made at the software
level.

Faster, cheaper algorithms for query processing.

Efficient Query Processing

Efficient Query Processing 22/37

IDEA: Top-k Retrieval

Retrieve the top k items for a given query without having to
evaluate all documents.

Web search engines return only the top-10 results to the
user.

For most queries most users generally do not retrieve
more documents.

No need to score all possible documents to produce a
“complete” ranking.

Top-k Retrieval - Concepts

Efficient Query Processing 23/37

Avoid scoring documents we knowwill not appear in the
top-k result list.

For a given similarity metric (for example BM25), prestore
some information for each term to avoid scoring.

Incorporate with block based compression schemes for
efficient query processing.

Utilise the GEQ(x) operation to avoid decompression of
large parts of postings lists.

Inefficient Evaluation of BM25

Efficient Query Processing 24/37

BM25 computation for one document:

SBM25Q,d =
∑
q∈Q

(k1 + 1)fd,q

k1
(
1− b+ b nd

navg

)
+ fd,q︸ ︷︷ ︸

=wd,q

· ln
(
N − FD,q + 0.5

FD,q + 0.5

)
︸ ︷︷ ︸

=wQ,q

Inefficient Evaluation:
For each q in Q computewQ,q in O(|Q|) time.
For each d in the document collection containing any q in
Q evaluatewd,q. (Potentially O(N) time!)
Return the top-k highest scoring documents.

Top-k - TheWANDAlgorithm

Efficient Query Processing 25/37

Basic Idea:
Keep track of the top-k highest scored documents.

For each unique term in the collection store the
maximum contribution it can have to any document
score in the collection.

Skip over documents that can not enter the top-k highest
results.

Citation: Andrei Z. Broder, David Carmel, Michael Herscovici, Aya
Soffer, Jason Y. Zien: Efficient query evaluation using a two-level
retrieval process. CIKM: 426-434 (2003)

WAND -Maximum term contribution

Efficient Query Processing 26/37

Maximum contribution
TheMaximum contribution of a term q as the largest score any
document in the collection can have for the query Q only consisting
of q.

Depends on the similarity measure.

Can be computed at construction time of the index.

Only requires storing a single floating point number for
each list.

Can be used to overestimate the score of a document in
a multi term query.

WAND - Example

Efficient Query Processing 27/37

Query Q : The quick brown fox with k = 2

2 3 7 8 9 10 11 12 13 17 18 19

5 6 9 11 14 18

2 4 5 15 42 84 96

5 7 8 13

…The

quick

brown

fox

WAND - Example

Efficient Query Processing 27/37

Query Q : The quick brown fox with k = 2

2 3 7 8 9 10 11 12 13 17 18 19

5 6 9 11 14 18

2 4 5 15 42 84 96

5 7 8 13

0.9

1.9

2.3

7.1

Max

…The

quick

brown

fox

Maximum Contribution for each query term

WAND - Example

Efficient Query Processing 27/37

Query Q : The quick brown fox with k = 2

2 3 7 8 9 10 11 12 13 17 18 19

5 6 9 11 14 18

2 4 5 15 42 84 96

5 7 8 13

0.9

1.9

2.3

7.1

Max

…The

quick

brown

fox

Score Id
1
2

WAND - Example

Efficient Query Processing 28/37

Query Q : The quick brown fox with k = 2

2 3 7 8 9 10 11 12 13 17 18 19

2 4 5 15 42 84 96

5 6 9 11 14 18

5 7 8 13

0.9

2.3

1.9

7.1

Max

…The

brown

quick

fox

Score Id
1 2.0 2
2

(1) Reorder based on current id and score smallest.

WAND - Example

Efficient Query Processing 28/37

Query Q : The quick brown fox with k = 2

2 3 7 8 9 10 11 12 13 17 18 19

2 4 5 15 42 84 96

5 6 9 11 14 18

5 7 8 13

0.9

2.3

1.9

7.1

Max

…The

brown

quick

fox

Score Id
1 2.0 2
2

(2) Move pointer of scored elements.

WAND - Example

Efficient Query Processing 28/37

Query Q : The quick brown fox with k = 2

2 3 7 8 9 10 11 12 13 17 18 19

2 4 5 15 42 84 96

5 6 9 11 14 18

5 7 8 13

0.9

2.3

1.9

7.1

Max

…The

brown

quick

fox

Score Id
1 2.0 2
2 0.5 3

(3) Reorder based on current id and score smallest.

WAND - Example

Efficient Query Processing 28/37

Query Q : The quick brown fox with k = 2

2 3 7 8 9 10 11 12 13 17 18 19

2 4 5 15 42 84 96

5 6 9 11 14 18

5 7 8 13

0.9

2.3

1.9

7.1

Max

…The

brown

quick

fox

Score Id
1 2.0 2
2 0.5 3

(4) Move pointer of scored elements

WAND - Example

Efficient Query Processing 29/37

Query Q : The quick brown fox with k = 2

2 4 5 15 42 84 96

5 6 9 11 14 18

5 7 8 13

2 3 7 8 9 10 11 12 13 17 18 19

2.3

1.9

7.1

0.9

Max

…

brown

quick

fox

The

(5) Reorder based on current id and score smallest.

WAND - Example

Efficient Query Processing 29/37

Query Q : The quick brown fox with k = 2

2 4 5 15 42 84 96

5 6 9 11 14 18

5 7 8 13

2 3 7 8 9 10 11 12 13 17 18 19

2.3

1.9

7.1

0.9

Max

…

brown

quick

fox

The

(6) Decide if we need to score smallest id.

Score Id
1 2.0 2
2 0.5 3

WAND - Example

Efficient Query Processing 29/37

Query Q : The quick brown fox with k = 2

2 4 5 15 42 84 96

5 6 9 11 14 18

5 7 8 13

2 3 7 8 9 10 11 12 13 17 18 19

2.3

1.9

7.1

0.9

Max

…

brown

quick

fox

The

(7) Replace 3 with 4 on the heap.

Score Id
1 2.0 2
2 1.4 4

WAND - Example

Efficient Query Processing 29/37

Query Q : The quick brown fox with k = 2

2 4 5 15 42 84 96

5 6 9 11 14 18

5 7 8 13

2 3 7 8 9 10 11 12 13 17 18 19

2.3

1.9

7.1

0.9

Max

…

brown

quick

fox

The

(8) Sort by current id. Evaluate 5. Add to Heap.

Score Id
1 6.3 5
2 2.0 2

WAND - Example

Efficient Query Processing 29/37

Query Q : The quick brown fox with k = 2

2 4 5 15 42 84 96

5 6 9 11 14 18

5 7 8 13

2 3 7 8 9 10 11 12 13 17 18 19

2.3

1.9

7.1

0.9

Max

…

brown

quick

fox

The

Score Id
1 6.3 5
2 2.0 2

(9) Move pointers and sort.

WAND - Example

Efficient Query Processing 30/37

Query Q : The quick brown fox with k = 2

5 6 9 11 14 18

5 7 8 13

2 3 7 8 9 10 11 12 13 17 18 19

2 4 5 15 42 84 96

1.9

7.1

0.9

2.3

Max

…

quick

fox

The

brown

(10) Use max to skip scoring smallest.

Score Id
1 6.3 5
2 2.0 2

WAND - Example - Fast Forward

Efficient Query Processing 31/37

Query Q : The quick brown fox with k = 2

2 3 7 8 9 10 11 12 13 17 18 19

5 6 9 11 14 18

5 7 8 13

2 4 5 15 42 84 96

0.9

1.9

7.1

2.3

Max

…The

quick

fox

brown

Do we have to evaluate document 9?

Score Id
1 8.1 7
2 6.3 5

WAND - Example - Fast Forward

Efficient Query Processing 31/37

Query Q : The quick brown fox with k = 2

2 3 7 8 9 10 11 12 13 17 18 19

5 6 9 11 14 18

5 7 8 13

2 4 5 15 42 84 96

0.9

1.9

7.1

2.3

Max

…The

quick

fox

brown

Do we have to evaluate document 9?

Score Id
1 8.1 7
2 6.3 5

NO! As 0.9 + 1.9 < 6.3!

WAND - Example - Fast Forward

Efficient Query Processing 31/37

Query Q : The quick brown fox with k = 2

2 3 7 8 9 10 11 12 13 17 18 19

5 6 9 11 14 18

5 7 8 13

2 4 5 15 42 84 96

0.9

1.9

7.1

2.3

Max

…The

quick

fox

brown

Score Id
1 8.1 7
2 6.3 5

What is the next document that has to be evaluated?

WAND - Example - Fast Forward

Efficient Query Processing 31/37

Query Q : The quick brown fox with k = 2

2 3 7 8 9 10 11 12 13 17 18 19

5 6 9 11 14 18

5 7 8 13

2 4 5 15 42 84 96

0.9

1.9

7.1

2.3

Max

…The

quick

fox

brown

Score Id
1 8.1 7
2 6.3 5

What is the next document that has to be evaluated?

13, as 0.9 + 1.9 + 7.1 > 6.3!

WAND - Example - Fast Forward

Efficient Query Processing 31/37

Query Q : The quick brown fox with k = 2

2 3 7 8 9 10 11 12 13 17 18 19

5 6 9 11 14 18

5 7 8 13

2 4 5 15 42 84 96

0.9

1.9

7.1

2.3

Max

…The

quick

fox

brown

Score Id
1 8.1 7
2 6.3 5

Fast forward smaller ids to 13 (GEQ) and sort.

WAND - Example - Evaluate 13?

Efficient Query Processing 32/37

Query Q : The quick brown fox with k = 2

2 3 7 8 9 10 11 12 13 17 18 19

5 7 8 13

5 6 9 11 14 18

2 4 5 15 42 84 96

0.9

7.1

1.9

2.3

Max

…The

fox

quick

brown

Score Id
1 8.1 7
2 6.3 5

WAND - Algorithm

Efficient Query Processing 33/37

Given Q, k and the postings lists L[0 . . . |Q| − 1]with:

L[i].max =∧ themaximum contribution of the list
L[i].cur =∧ the current element of the list

1: functionWAND(Q,k,L[0 . . . |Q| − 1])
2: TopDocs = ∅ .Min Heap of size k
3: ThresholdΘ = 0 . Smallest score in TopDocs
4: while Not all lists are processed do
5: Sort L based on L[i].cur
6: Select pivot list p such that

∑p−1
0 L[i].max >= Θ

7: Forward all lists L[0 . . . |p| − 1] to dp = L[p].cur
8: Compute SBM25Q,dp and insert into TopDocs if score> Θ

9: Θ = min(TopDocs) or 0 if |TopDocs| < k.
10: endwhile
11: Return TopDocs
12: end function

WAND - Discussion

Efficient Query Processing 34/37

Usemax contribution of query term to overestimate
score of a document.

Do not score document if it can not enter the top-k heap.

Utilize GEQ function of compressed representation to
skip over large parts of the postings lists.

Similarity metric fixed at index construction time.

Works very well in practice.

WAND - Performance

Efficient Query Processing 35/37

Fraction of pointers processed as a percentage of the total number of pointers associatedwith each query, GOV2, using TREC

topics 701–850. Across the set of queries, the average number of postings per query for exhaustive processing is 1,460,562,

and the median number of postings is 1,080,008. The percentages shown in the table are relative to these two numbers.

WAND - Performance II

Efficient Query Processing 36/37

Evaluation of one query ““north korean counterfeiting” for k = 10.

Further Reading

Efficient Query Processing 37/37

Reading:
Manning, Christopher D; Raghavan, Prabhakar; Schütze,
Hinrich; Introduction to information retrieval, Cambridge
University Press 2008. (Chapter 5)

Additional References:
Daniel Lemire, Leonid Boytsov: Decoding billions of
integers per second through vectorization. Softw., Pract.
Exper. 45(1): 1-29 (2015)
Andrei Z. Broder, David Carmel, Michael Herscovici, Aya
Soffer, Jason Y. Zien: Efficient query evaluation using a
two-level retrieval process. CIKM: 426-434 (2003)

	Index compression
	Efficient Query Processing

