COMP90042 LECTURE 20

MACHINE TRANSLATION: WORD-BASED MODELS
OVERVIEW: WORD ALIGNMENT IN SMT

- Motivation
- Word based translation models
 - IBM model 1
 - Training using the Expectation Maximisation algorithm
- Decoding to find the best translation
Translation is a classic “AI-hard” challenge

- Aims to convert from one human language to another, while preserving the meaning and the fluency of the text

Now in wide-spread use, including

- Google, Bing translation tools
- Cross language information retrieval
- Speech translation
- Computer-aided translation
- ...
TRANSLATION IS HARD

However, the sky remained clear under the strong north wind.

Although north wind howls, but sky still extremely limpid.

Not just simple word for word translation
 - structural changes, e.g., syntax and semantic
 - multiple word translations, idioms
 - inflections for gender, case etc
 - missing information (e.g., determiners)
HISTORICAL VIEW

Interlingua
(knowledge representation)

4. Knowledge-based Transfer

English
(syntactic parse)

3. Semantic Transfer

French
(syntactic parse)

2. Syntactic Transfer

English
(word string)

1. Direct Translation

French
(word string)

English
(syntactic parse)

French
(syntactic parse)

English
(semantic representation)

French
(semantics representation)

Interlingua
(knowledge representation)
Noisy Channel Model

When I look at an article in Russian, I say: “This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.”

Warren Weaver (1949)

Assume that we started with an English sentence.

The sentence was then corrupted by translation into French.

... we want to recover the original.
Use Bayes' inversion:

\[P(e|f) = \frac{P(e)P(f|e)}{P(f)} \]

Decoder seeks to maximise:

\[\hat{e} = \arg\max_e P(e)P(f|e) \]

N.b., denominator constant wrt \(e \), can be dropped
NOISY CHANNEL MT

• Two components:

Translation Model (TM)

\[\hat{e} = \arg\max_e P(e)P(f|e) \]

Language Model (LM)

• Responsible for:

 – \(P(f|e) \) rewards good translations, but permissive of disfluent \(e \)

 – \(P(e) \) rewards \(e \) which look like fluent English, and helps put words in the correct order

 – Why not just one TM to model \(P(e|f) \) directly?
LEARNING

▸ How to learn the LM and TM
 ▸ LM: based on text frequencies in large monolingual corpora (as seen in previous lecture)
 ▸ TM: based on word co-occurrences in parallel texts

▸ Parallel texts (or bitexts)
 ▸ one text in multiple languages
 ▸ Produced by human translation; readily available on web
 ▸ news, legal transcripts, literature, subtitles, bible, ...
 ▸ See e.g. http://opus.lingfil.uu.se/
MODELS OF TRANSLATION

‣ Statistical machine translation learns translations from bitexts
 ‣ requires separate sentence alignment process
 → fairly easy if sentences in similar order, can use length in chars
 ‣ key questions are:
 ‣ how to formulate process of translation?
 ‣ how can we learn without explicit word-level instruction?
 → just have sentence pairs, but no indication of what words translate one another
 ‣ how can we produce new translations?
ALIGNMENT IN TRANSLATION

Consider following bitext:

- *das Haus ist klein*
 - the house is small

- *klein ist das Haus*
 - the house is small

- *das Haus ist klitzeklein*
 - the house is very small

- *das Haus ist ja klein*
 - the house is small

Not always word for word translation, nor do they have the same word order:

- inserted and dropped words
- rearrangement of word order, aka ‘re-ordering’
- some word/s translate as several words
Representation:

\[E = e_1 \ldots e_i = \text{And the program has been implemented} \]
\[F = f_1 \ldots f_j = \text{Le programme a été mis en application} \]
\[A = a_1 \ldots a_j = 2, 3, 4, 5, 6, 6, 6 \]

Figure from Brown, Della Pietra, Della Pietra, Mercer, 1993
CAUTIONARY NOTE

- Consider translating in the other direction

 ![Alignment Diagram]

- What are the alignment values?

 - $a=0$ denotes an unaligned word (also called NULL)

 - this approach to alignment imposes modelling limitations & asymmetry
If we knew the alignments this would be easy

Simply count frequencies:

- e.g., $p(\text{programme} \mid \text{program}) = \frac{c(\text{programme}, \text{program})}{c(\text{program})}$
 - counts aggregated over all aligned word pairs in the corpus

However, word-alignments are rarely observed

- have to infer the alignments

- define probabilistic model and use the Expectation-Maximisation (EM) algorithm
IBM MODEL 1

- Formulate probabilistic model of translation

\[P(F, A|E) = \frac{\epsilon}{(I + 1)^J} \prod_{j=1}^{J} t(f_j|e_{a_j}) \]

- where
 - \(t(f|e) \) are translation probabilities
 - alignments \(a_j \) indexes the translation of word \(j \)
IBM MODEL 1

\[P(F, A|E) = \frac{\epsilon}{(I + 1)^J} \prod_{j=1}^{J} t(f_j|e_{a_j}) \]

- Where does the leading factor come from?
 - \(\epsilon\) is a small constant reflecting the choice of length \(J\)
 - \(1/(I+1)\) reflects the alignment probability, using uniform distribution over
 - aligning with any of the \(I\) words in \(E\); or aligning to NULL \((i=0)\)
Given translation table, evaluate the probability of the aligned sentence pair

\[P(F, A|E) = \frac{\epsilon}{5^4} t(\text{the}) t(\text{house}) t(\text{is}) t(\text{small}) \]

\[= 0.000018\epsilon \]
INCOMPLETE DATA

- To learn the parameter tables, t, need the word alignments

- However, word-alignments are rarely available; how to handle?
 - if we had a good model, we could use it to guess alignments
 - if we had a good guess about the alignments, we could train a model
 - a ‘chicken and egg’ problem…
ESTIMATING THE MODEL

- Instance of “expectation maximization” (EM) algorithm
 1. make initial guess of t parameters, e.g., uniform
 2. estimate alignments of each sentence pair in corpus $P(A | E, F)$
 3. learn parameters t, based on expected (fractional) alignments over corpus (from step 2)
 4. repeat from step 2

- In each step we are improving the fit of our model to the data
 - terminate after fixed number of steps (e.g., 5-10)
EM FOR IBM1

Need to calculate expected alignments under our model (step 2)

\[P(A|E, F) = \frac{P(F, A|E)}{P(F|E)} \]

Numerator is from before:

\[P(F, A|E) = \frac{\epsilon}{(I + 1)^J} \prod_{j=1}^{J} t(f_j|e_{a_j}) \]

Denominator more complex:

\[P(F|E) = \sum_{A} P(F, A|E) \]
EM FOR IBM1: COMPUTING $P(E|F)$

\[
P(F|E) = \sum_A P(F, A|E)
\]

\[
= \sum_{a_1} \sum_{a_2} \cdots \sum_{a_J} P(F, A|E)
\]

\[
= \sum_{a_1} \sum_{a_2} \cdots \sum_{a_J} \frac{\epsilon}{(I + 1)^J} \prod_{j=1}^{J} t(f_j|e_{a_j})
\]

\[
= \frac{\epsilon}{(I + 1)^J} \sum_{a_1} \sum_{a_2} \cdots \sum_{a_J} \prod_{j=1}^{J} t(f_j|e_{a_j})
\]

\[
= \frac{\epsilon}{(I + 1)^J} \prod_{j=1}^{J} \sum_{a_j} t(f_j|e_{a_j})
\]

Key trick! Can swap order of sum and product, as a_j only used in a single factor.
\[P(A|E, F) = \frac{P(F, A|E)}{P(F|E)} \]

\[= \frac{\epsilon (I+1)^J \prod_{j=1}^{J} t(f_j|e_{a_j})}{(I+1)^J \prod_{j=1}^{J} \sum_{a_j} t(f_j|e_{a_j})} \]

\[= \prod_{j=1}^{J} \frac{t(f_j|e_{a_j})}{\sum_{a_j} t(f_j|e_{a_j})} \]

\[P(a_j|E, F) = \frac{t(f_j|e_{a_j})}{\sum_{a_j} t(f_j|e_{a_j})} \]

Fairly simple end result & even better, it factorises
1. make initial guess of t parameters, e.g., uniform

2. initialise counts, c, of translation pairs to 0

3. for each sentence pair, (E, F)
 - for each position j, and value of $a_j \in \{0, 1, 2, \ldots, l\}$
 - compute $P(a_j|E, F)$ i.e., $P(a_j|E, F) = \frac{t(f_j|e_{a_j})}{\sum_{a_j} t(f_j|e_{a_j})}$
 - update fractional counts, $c(e_j, f_{a_j}) \leftarrow c(e_j, f_{a_j}) + P(a_j|E, F)$

4. update t with normalised counts, $t(f|e) = c(e, f) / c(e)$

5. repeat from step 2
See ipython notebook
MODELLING LIMITATIONS

‣ Simple model and quite naïve
 ‣ ignores the positions of words in both strings
 ‣ alignments exhibit consistent patterns

‣ More general issues:
 ‣ limited to word-based phenonema
 ‣ asymmetric, can’t handle 1:many or many:many
 ‣ learning from sparse data (solution: using large corpora)

Figure from Brown, Della Pietra², Mercer, 1993
OTHER ALIGNMENT MODELS

- IBM paper introduced several models of varying complexity
 - IBM2: non-uniform alignment probability, $p(i|j, I, J)$
 - IBM3: *fertility* for each word in E
 - how many words should it translate as in the other language? (e.g., $\phi(\text{did}) \sim 0$, $\phi(\text{the}) \sim 1$, $\phi(\text{implemented}) \sim 3$)
 - IBM4,5: includes *word clusters* in distortion model
 - to represent consistent syntactic reordering
- Hidden Markov Model
 - better distortion model favouring monotone alignment with small ‘jumps’
HMMS FOR ALIGNMENT

‣ How to better model the alignment prior?
 ▪ IBM 2 & 3 include an explicit term for modelling typical alignment values using table of condition probabilities, $Pr(a_j = i | j, l, m)$
 ▪ suffers for long sentence pairs, where there too little data to estimate

‣ HMM provides a better solution
 ▪ each alignment a_j depends on the previous alignment a_{j-1}

$$P(A) = P(a_1)P(a_2 | a_1)P(a_3 | a_2) \ldots P(a_l | a_{l-1})$$
HMMS FOR ALIGNMENT

- Formulated as

\[P(F, A|E) = P(J|I) \times \prod_{j} P(a_{j}|a_{j-1}, I)P(f_{j}|e_{a_{j}}) \]

- where \(P(a_{1}|a_{0}, I) \) is a placeholder for \(P(a_{1} | I) \)
Section 25.5. Alignment in MT

Emission probability of \(f_j \) being generating conditioned on \(a_j \)th word in E

- versus generating from ‘cluster’ \(a_j \) in tagging HMM

Transition probability based on jump distance, \(a_j - a_{j-1} \)

- versus the pair of integer ‘cluster’ identifiers in tagger

I.e., transition dist

\[
P(i|i', I) = \frac{c(i - i')}{\sum_{i''=1}^{I} c(i'' - i')}
\]
The HMM benefits from efficient algorithms for computing expectations

- the forward-backward algorithm here has $O(JI^2)$ time complexity (why?)

Train the model as per IBM1, but alter step 3

- calculate expectations using Baum-Welch (forward-backward) over the sentence
- accumulate counts based on expected values of each a_j as before
DECODING

Objective

\[\hat{e} = \arg \max_e P(e)P(f|e) \]

- sometimes includes other components, such as
 - distortion cost based on word reordering (translations are largely left-to-right, penalise big ‘jumps’)
 - number of words to discourage very short output

Search problem

- find the translation with the best overall score
- use beam search a form of dynamic programming akin to Viterbi search in HMMs and chart parsing with grammars
- Typically embedded complex phrase-based approaches, based on translating several words at a time
SUMMARY

- Translation as word-based approach for modelling bitexts
- Noisy channel formulation of translation
- IBM model1 and EM training
- Reading:
 - JM2 #25, 25.4-25.6
 - Koehn09 #4, 4.1-4.3 (more detailed treatment)