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Outline

• Dependency grammars

• Projectivity

• Parsing methods
* transition-based parsing
* graph-based
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Dependency G vs. Phrase-Structure G

• phrase-structure grammars assume a constituency tree 
which identifies the phrases in a sentence
* based on idea that these phrases are interchangable (e.g., 

swap an NP for another NP) and maintain grammaticality

• dependency grammar offers a simpler approach
* describe binary relations between pairs of words
* namely, between heads and dependents

• Building on notion of head as seen
in phrase-structure parsers…
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What is a Dependency?

• Links between a head word and its dependent words 
in the sentence: either syntactic roles or modifier 
relations

• Several types of dependency, e.g.,
* argument of a predicate, e.g., ate(rat, cheese)

• rat is the subject of verb ate (thing doing the eating)
• cheese is the direct object of verb ate (thing being eaten)
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What is a Dependency II

• Other types of dependencies include
* a modifier which is typically optional (aka adjunct)

• [(with) me] modifies the act of (the rat) eating

* specifiers, e.g., the rat, the cheese, with me
• help to specify the referent (which rat?), 

the head’s relation, etc.

• Head and type of relation will affect dependents
* Case, verb-subject agreement: 

I talk to myself, vs *me talks to I
* agreement for number, gender and case



6

COMP90042 W.S.T.A. (S1 2019) L19

Dependency types

• Edges labelled with the dependency type, e.g., Stanford 
types, e.g., sample types (key: head, dependent) 
* NSUBJ Daniel speaks Brazilian Portuguese 

(nominal subject)
* DOBJ Trevor presented a lecture in English

(direct object)
* IOBJ Morpheus gave Neo the red pill

(indirect object)
* APPOS Neo, the main character, swallowed the pill

(appositive)

• See reading for more!
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Why dependencies?

• Dependency tree more directly represents the core 
of the sentence: who did what to whom?
* captured by the links incident on verb nodes, e.g., NSUBJ, 

DOBJ etc; easier to answer questions like:
• what was the main thing being expressed in the sentence 

(eating = root)

* more minor details are buried deeper in the tree (e.g., 
adjectives, determiners etc)
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Dependencies in NLP models
• What can we do with dependency trees?

* use as features for other tasks, e.g., sentiment, relation 
extraction, QA, various semantic tasks.

• E.g., relation extraction
* “Brasilia, the Brazilian capital, was founded in 1960.”

→ capital(Brazil, Brasilia); founded(Brasilia, 1960)
* parts of the tree capture relations in succinctly and  in a 

generalisable way
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Dependency vs head

• Close similarity with ‘head’ in phrase-structure 
grammars
* the ‘head’ of an XP is (mostly) an X, i.e., noun in a NP, verb 

in a VP etc.
* main dependency edges captured in rewrite rules

• S^ate -> NP^rat VP^ate
captures dependency
rat ← ate

Sˆate

NPˆrat

DT

the

NN

rat

VPˆate

VBG

ate

NPˆcheese

DT

the

NN

cheese

PPˆwith

IN

with

NPˆme

PRP

me
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Dependency tree

• Dependency edges form a tree
* each node is a word token
* one node is chosen as the root
* directed edges link heads and their dependents

• Cf. phrase-structure grammars
* forms a hierarchical tree
* word tokens are the leaves
* internal nodes are ‘constituent phrases’ e.g., NP, VP etc

• Both use part-of-speech 
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Projectivity

• A tree is projective if, for all arcs from head to dependent 
* there is a path from the head to every word that lies between 

the head and the dependent

* I.e., the tree can be drawn on a plane without any arcs 
crossing

• Most sentences are projective, however exceptions exist 
(fairly common in other languages)

Figure JM3, Ch 13
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Dependency grammar

• Not really a grammar, in sense of a ‘generative 
grammar’
* cannot be said to define a language, unlike a context free 

grammar
* any structure is valid, job of probabilistic model to 

differentiate between poor and good alternatives

• However, very practical and closely matches what we 
want from a parser (most often predicates & 
arguments)
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Dependency treebanks

• A few dependency treebanks 
* Czech, Arabic, Danish, Dutch, Greek, Turkish …

• Many more phrase-structure treebanks, which can be 
converted into dependencies

• More recently, Universal Dependency Treebank
* collates >100 treebanks, >60 languages 
* unified part-of-speech, morphology labels, relation types
* consistent handling of conjunctions and other tricky cases

• http://universaldependencies.org/

http://universaldependencies.org/
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Treebank conversion

• Some treebanks automatically converted into 
dependencies
* using various heuristics, e.g., head-finding rules
* often with manual correction

6 CHAPTER 13 • DEPENDENCY PARSING

the use of head rules discussed in Chapter 10 first developed for use in lexicalized
probabilistic parsers (Magerman 1994,Collins 1999,Collins 2003). Here’s a simple
and effective algorithm from Xia and Palmer (2001).

1. Mark the head child of each node in a phrase structure, using the appropriate
head rules.

2. In the dependency structure, make the head of each non-head child depend on
the head of the head-child.

When a phrase-structure parse contains additional information in the form of
grammatical relations and function tags, as in the case of the Penn Treebank, these
tags can be used to label the edges in the resulting tree. When applied to the parse
tree in Fig. 13.4, this algorithm would produce the dependency structure in Fig. 13.4.

(13.4)
Vinken will join the board as a nonexecutive director Nov 29

sbj

aux

dobj

clr

tmp

nmod

case

nmod

amod num

root

The primary shortcoming of these extraction methods is that they are limited by
the information present in the original constituent trees. Among the most impor-
tant issues are the failure to integrate morphological information with the phrase-
structure trees, the inability to easily represent non-projective structures, and the
lack of internal structure to most noun-phrases, as reflected in the generally flat
rules used in most treebank grammars. For these reasons, outside of English, most
dependency treebanks are developed directly using human annotators.

13.4 Transition-Based Dependency Parsing

Our first approach to dependency parsing is motivated by a stack-based approach
called shift-reduce parsing originally developed for analyzing programming lan-shift-reduce

parsing

guages (Aho and Ullman, 1972). This classic approach is simple and elegant, em-
ploying a context-free grammar, a stack, and a list of tokens to be parsed. Input
tokens are successively shifted onto the stack and the top two elements of the stack
are matched against the right-hand side of the rules in the grammar; when a match is
found the matched elements are replaced on the stack (reduced) by the non-terminal
from the left-hand side of the rule being matched. In adapting this approach for
dependency parsing, we forgo the explicit use of a grammar and alter the reduce
operation so that instead of adding a non-terminal to a parse tree, it introduces a
dependency relation between a word and its head. More specifically, the reduce ac-
tion is replaced with two possible actions: assert a head-dependent relation between
the word at the top of the stack and the word below it, or vice versa. Figure 13.5
illustrates the basic operation of such a parser.

A key element in transition-based parsing is the notion of a configuration whichconfiguration

consists of a stack, an input buffer of words, or tokens, and a set of relations rep-
resenting a dependency tree. Given this framework, the parsing process consists of
a sequence of transitions through the space of possible configurations. The goal of
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Examples from treebanks

• Danish DDT includes additional ‘subject’ link for verbs

• METU-Sabancı Turkish treebank
* edges between morphological units, not just words (-,+)

Dansk
AN
4

kultur
NC
5

skal
VA
6

skabes
VA
7

,
XP
8

forvaltes
VA
9

,
XP
10

plejes
VA
11

og
CC
12

forkæles
VA
13

af
SP
14

os
PP
15

danskere
NC
16

.
XP
17

Den
PP
20

er
VA
21

vores
PO
22

mod subj

[subj][subj][subj][subj]

vobj pnctpnct conj pnct conj coord modconj nobj nobj subj pred pnctpossd

egenart
NC
23

og
CC
24

livsstil
NC
25

.
XP
26

Det
PD
29

bedste
AN
30

vi
PP
31

har
VA
32

.
XP
33

I
SP
38

debatten
NC
39

tordnes
VA
40

der
U=
41

løs
AN
42

mod
SP
43

Det
PD
44

kgl.
AN
45

Teaters
NC
46

pnctpossd coord conj mod

[dobj]

rel pnctsubj nobjmod expl mod pobj pnctnobj mod nobj possd

repertoire
NC
47

.
XP
48

Filmfolket
NC
51

jamrer
VA
52

sig
PP
53

over
SP
54

manglende
VA
55

bevillinger
NC
56

,
XP
57

mens
CS
58

forfatterne
NC
59

flår
VA
60

hovedet
NC
61

af
SP
62

pnctpossd subj dobj pobj pnct mod pnctnobjmod vobjsubj dobj mod nobj

hinanden
PC
63

.
XP
64

Samtidig
RG
67

kvier
VA
68

vi
PP
69

os
PP
70

ved
SP
71

at
U=
72

købe
VA
73

for
RG
74

dyre
AN
75

bøger
NC
76

,
XP
77

svigter
VA
78

biograferne
NC
79

og
CC
80

ser
VA
81

TV
NC
82

pnctnobj mod subj dobj pobj pnct conj coord pnct

[subj][subj]

nobj vobj dobjmod mod dobj conj dobj mod

i
SP
83

stedet
NC
84

for
SP
85

at
U=
86

gå
VA
87

i
SP
88

teatret
NC
89

.
XP
90

Det
PP
95

er
VA
96

der
U=
97

for
SP
98

så
RG
99

vidt
RG
100

ikke
RG
101

noget
PI
102

nyt
AN
103

i
SP
104

,
XP
105

bortset_fra
SP
106

pnctmod nobj pobj nobj vobj mod nobj nobj expl mod mod dobj mod pnct mod pnctavobjmod mod nobj

8 K. OFLAZER, B. SAY, D-Z. HAKKANI-TÜR, G. TÜR

The syntactic relations that we have currently opted to encode in our syn-
tactic representation are the following:

1. Subject 2. Object
3. Modifier (adv./adj.) 4. Possessor
5. Classifier 6. Determiner
7. Dative Adjunct 8. Locative Adjunct
9. Ablative Adjunct 10. Instrumental Adjunct

Some of the relations above perhaps require some more clarification. Object
is used to mark objects of verbs and the nominal complements of postpositions.
A classifier is a nominal modifier in nominative case (as in book cover) while
a possessor is a genitive case-marked nominal modifier. For verbal adjuncts,
we indicate the syntactic relation with a marker paralleling the case marking
though the semantic relation they encode is not only determined by the case
marking but also the lexical semantics of the head noun and the verb they
are attached to. For instance a dative adjunct can be a goal, a destination, a
beneficiary or a value carrier in a transaction, or a theme, while an ablative
adjunct may be a reason, a source or a theme. Although we do not envision the
use of such detailed relation labels at the outset, such distinctions can certainly
be useful in training case-frame based transfer modules in machine translation
systems to select the appropriate prepositions in English for instance.

    Bu eski  bahçe-de+ki  gül-ün  böyle   büyü +me-si  herkes-i  çok etkile-di

       D    ADJ      N                     ADJ          N            ADV            V            N              PN           ADV        V

Mod Mod Mod Obj
Mod

Det Subj Subj

Last line shows the final POS for each word.

Figure 1.3. Dependency structure for a sample Turkish Sentence

2.3 Example of a Treebank Sentence
In this section we present the detailed representation of a Turkish sentence

in the treebank. Each sentence is represented by a sequence of the attribute lists
of the words involved, bracketed with tags <S> and </S>.5 Figure 1.4 shows
the treebank encoding for the sentence given earlier. Each word is bracketed
by <W> and </W> tags. The IX denotes the number or index of the word. LEM
denotes the lemma of the word, as one would find in a dictionary. For verbs,
this is typically an infinitive form, while for other word classes it is usually
the root word itself. MORPH indicates the morphological structure of the word
as a sequence of morphemes, essentially corresponding to the lexical form.

Oflazer, Kemal, et al. "Building a Turkish treebank." Treebanks. Springer, 2003. 261-277.

http://www.buch-kromann.dk/matthias/ddt1.0/
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Dependency parsing

• Parsing: task of finding the best structure for a given 
input sentence
* i.e., arg maxt score(t|w)

• Two main approaches:
* graph-based: uses chart over possible parses, and dynamic 

programming to solve for the maximum
* transition-based: treats problem as incremental sequence 

of decisions over next action in a state machine
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Transition based parsing

• Frames parsing as sequence of simple parsing 
transitions
* maintain two data structures

• buffer = input words yet to be processed
• stack = head words currently being processed

* two types of transitions
• shift = move word from buffer on to top of stack
• arc = add arc (left/right) between top two items on stack 

(and remove dependent from stack)
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Transition based parsing algorithm

• For each word in input (buffer)
* shift current word from buffer onto stack
* while there are 2 or more items on stack:

• either: 
– a) add an arc (left or right) between top two items, and remove the 

dependent; or
– b) continue to outer loop

• Finished when buffer empty & stack has only 1 item

• Always results in a projective tree
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Example
Buffer Stack Action
I shot an elephant in my pyjamas Shift

shot an elephant in my pyjamas I Shift
an elephant in my pyjamas I, shot Arc-left
an elephant in my pyjamas shot Shift

elephant in my pyjamas shot, an Shift
in my pyjamas shot, an, elephant Arc-left

in my pyjamas shot, elephant Arc-right
in my pyjamas shot Shift

… … …
shot <done>

I shot an elephantGenerated parse: in my pyjamas
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Transition based parsing models

• How do we know when to arc and whether to add 
left or right facing arcs?

• Use a scoring function, score(buffer, stack, transition), 
based on the state, i.e.,
* the next word(s) in the buffer
* the contents of the stack, particularly the top two items
* the transition type, one of {continue, arc-left, arc-right}

• Then select the transition with the highest score 
(greedy search)
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Transition based scoring

• Form a feature representation for the state

• Example features, ɸ
* [stack top has tag NN & next in stack has tag DT & transition = arc-left]
* [stack top has tag NN & next in stack has tag DT & transition = arc-right]
* [stack top has tag NN & next in stack is “has” & transition = arc-right]
* [stack top has tag JJ & next in stack has tag DT & transition = shift]

• Have a weight for each feature, w
* such that the parser can choose between the possible 

transitions (e.g., arc-left, arc-right, shift)

Fig from Goldberg & Nivre (2012)
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Training a Transition-based Dep Parser

• How to learn the feature weights from data? 
Perceptron training (Goldberg & Nivre, COLING 2012)
* uses an “oracle” sequence of parser actions
* predict next action 

in sequence, and 
update when 
model disagrees
with gold action

Algorithm 2 Online training with a static oracle
1: w 0
2: for I = 1! ITERATIONS do

3: for sentence x with gold tree Ggold in corpus do

4: c cs(x)
5: while c is not terminal do

6: tp  arg maxt w ·φ(c, t)
7: to  o(c, Ggold)
8: if tp 6= to then

9: w w+ φ(c, to)� φ(c, tp)
10: c to(c)
11: return w

transitions that have zero cost according to the dynamic oracle. The weight update is then
performed only if the model prediction does not have zero cost (lines 9–10), which means that
updates no longer need to reflect a single canonical transition sequence. Finally, the transition
used to update the parser configuration is no longer the single transition predicted by the static
oracle, but a transition that is chosen by the function CHOOSE_NEXT, which may be a transition
that does not have zero-cost (lines 11-12). In our current implementation, CHOOSE_NEXT is
conditioned on the predicted transition tp, the set of zero cost transitions, and the iteration
number. However, more elaborate conditioning schemes are also possible.

We propose two versions of the CHOOSE_NEXT function. In the first version, CHOOSE_NEXTAMB, the
training algorithm only follows optimal (zero cost) transitions but permits spurious ambiguity
by following the model prediction tp if this has zero cost and a random zero cost transition
otherwise. In the second version, CHOOSE_NEXTEXP, the training algorithm also explores non-
optimal transitions. More precisely, after the first k training iterations, it follows the model
prediction tp regardless of its cost in 100(1-p)% of the cases and falls back on CHOOSE_NEXTAMB

in the remaining cases. It is worth noting that Algorithm 3 subsumes Algorithm 2 as a special
case if we define ZERO_COST to contain only the prediction to of the static oracle, and define
CHOOSE_NEXT to always return to.

The novel training algorithm presented here is based on perceptron learning.8 Since the
dynamic oracle provides a cost for every transition-configuration pair, it could be used also
for cost-sensitive learning. Our preliminary attempts with cost-sensitive learning through the
max-loss and prediction-based passive-aggressive algorithms of Crammer et al. (2006) show
that the cost-sensitive variants of the algorithms indeed improve upon the non-cost-sensitive
variants. However, the best passive-aggressive results were still significantly lower than those
obtained using the averaged perceptron. We do not elaborate on cost-sensitive training in this
work, and leave this direction for future investigation.

5 Experiments

We present experiments comparing greedy arc-eager transition-based parsers trained (a) using
the static oracle (Algorithm 2), (b) using the dynamic oracle with spurious ambiguity (Al-
gorithm 3 with CHOOSE_NEXTAMB), and (c) using the dynamic oracle with spurious ambiguity

8In practice, we use an averaged perceptron, although this is not reflected in the algorithm descriptions above.

967
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Graph based parsing

• Dependency parsing using dynamic programming…
* Can consider as a CFG, where lexical items (heads) are non-

terminals

* Score of parse assumed
to decompose into 
pairwise dependencies

shot

I

I

shot

shot

shot

shot

elephant

an

an

elephant

elephant

in

in

in

pyjamas

my

my

pyjamas

pyjamas
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E.g., production 
shot → shot in

means arc-right from 
“shot” to “in” 

The head is carried up 
in the tree.
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Graph based parsing

• Naïve method for using CYK inefficient
* Parsing complexity O(n5)
* split encoding allows processing of left or right dependents 

separately, leading to O(n3) runtime (Johnson, 2017)

• Alternatively can use Chiu-Liu-Edmond’s algorithm
* minimum cost arborescence (spanning tree)
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A final word

• Dependency parsing a compelling, alterative, 
formulation to constituency parsing
* structures based on words as internal nodes
* edges encode word-word syntactic and semantic relations
* often this is the information we need for other tasks!

• Transition-based parsing algorithm
* as sequence of shift and arc actions

• Graph-based parsing 
* uses classic dynamic programming methods

(similar to CYK)
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Required Reading

• J&M3 Ch. 13


