Dependency Grammar & Parsing

COMP90042 Lecture 19

THE UNIVERSITY OF

MELBOURNEL

nmod

" [D_‘:J’ thw_m IN'IPRPS]” ”"‘°%

I shot an elephant in my pyjamas

COMP90042 W.S.T.A. (S1 2019) L19

Outline

* Dependency grammars
* Projectivity

* Parsing methods
* transition-based parsing

* graph-based

COMP90042 W.S.T.A. (S1 2019) L19

Dependency G vs. Phrase-Structure G

* phrase-structure grammars assume a constituency tree
which identifies the phrases in a sentence

* based on idea that these phrases are interchangable (e.g.,
swap an NP for another NP) and maintain grammaticality

* dependency grammar offers a simpler approach

* describe binary relations between pairs of words

* namely, between heads and dependents -~

NP VP
* Building on notion of head as seen o B
in phrase-structure parsers... e xae ste T
nmod the cheese with PRP
) dobj l
detwnSUDj\W'd% N PRP) me

the rat ate the cheese with me ;

COMP90042 W.S.T.A. (S1 2019) L19

What is a Dependency?

* Links between a head word and its dependent words
in the sentence: either syntactic roles or modifier

relations

nmod
: SN \
et nsubj et . case
o NN \WBD/(D NN (INT O YPRP)

the rat ate the cheese with me

* Several types of dependency, e.q.,

* agrgument of a predicate, e.g., ate(rat, cheese)
* ratis the subject of verb ate (thing doing the eating)
* cheese is the direct object of verb ate (thing being eaten)

COMP90042 W.S.T.A. (S1 2019) L19

What is a Dependency I

* Other types of dependencies include

* a modifier which is typically optional (aka adjunct)

* [(with) me] modifies the act of (the rat) eating

* specifiers, e.g., the rat, the cheese, with me

* help to specify the referent (which rat?),
the head’s relation, etc.

* Head and type of relation will affect dependents

* Case, verb-subject agreement:
| talk to myself, vs *me talks to |

* agreement for number, gender and case

COMP90042 W.S.T.A. (S1 2019) L19

Dependency types

* Edges labelled with the dependency type, e.qg., Stanford
types, e.g., sample types (key: head, dependent)

* NSUBJ Daniel speaks Brazilian Portuguese
(nominal subject)

* DOBJ Trevor presented a lecture in English
(direct object)

* |0OBJ Morpheus gave Neo the red pill
(indirect object)

* APPOS Neo, the main character, swallowed the pill
(appositive)

* See reading for more!

COMP90042 W.S.T.A. (S1 2019) L19

Why dependencies?

* Dependency tree more directly represents the core
of the sentence: who did what to whom?

* captured by the links incident on verb nodes, e.g., NSUBJ,
DOBJ etc; easier to answer questions like:

 what was the main thing being expressed in the sentence
(eating = root)

o
2

/\

NP VP
nmod AN] T
;:dob j DT NN VBG NP PP
det NSubj~. ... det ____MmCase
w J\VBD. \@ ‘IN-*- PBP- tl‘|1e rclat ale S'T/\}-II'-I II/\IP

the rat ate the cheese with me | | |

the cheese with PRP

|

me

* more minor details are buried deeper in the tree (e.g.,
adjectives, determiners etc)

COMP90042 W.S.T.A. (S1 2019) L19

Dependencies in NLP models

* What can we do with dependency trees?

* use as features for other tasks, e.g., sentiment, relation
extraction, QA, various semantic tasks.

* E.g., relation extraction

* “Brasilia, the Brazilian capital, was founded in 1960.”
— capital(Brazil, Brasilia); founded(Brasilia, 1960)

« parts of the tree capture relations in succinctly and in a
generalisable way

nsubjpass
punct
appos punct
det nmod
_ZNNP puncag T . g \
g e

Brasilia , the Brazilian capltal was founded in 1960 .

COMP90042 W.S.T.A. (S1 2019) L19

Dependency vs head

* Close similarity with ‘head’ in phrase-structure
grammars

* the ‘head’ of an XP is (mostly) an X, i.e., noun in a NP, verb

In a VP etc.
* main dependency edges captured in rewrite rules
e SAate -> NPArat VP ate S ate
captures dependency /\
rat & ate NP rat VP "ate
N
DT NN
]
the rat VBG NP “cheese PP with
| N
ate DT NN 1§ NPme

| |
the cheese Wi|th P1|%P

me 9

COMP90042 W.S.T.A. (S1 2019)

L19

Dependency tree

* Dependency edges form a tree
* each node is a word token

+* one node is chosen as the root

* directed edges link heads and their dependents

* Cf. phrase-structure grammars

* forms a hierarchical tree
* word tokens are the leaves
* internal nodes are ‘constituent phrases’ e.g., NP, VP etc

* Both use part-of-speech

10

COMP90042 W.S.T.A. (S1 2019) L19

Projectivity

* Atreeis projective if, for all arcs from head to dependent

* there is a path from the head to every word that lies between
the head and the dependent

* |.e., the tree can be drawn on a plane without any arcs
crossing

* Most sentences are projective, however exceptions exist
(fairly common in other languages)

Figure IM3, Ch 13
|root| fmod |

\'nmod'

[Tl @] sl =)

JetBlue canceled our flight this morning which was already late

11

COMP90042 W.S.T.A. (S1 2019) L19

Dependency grammar

* Not really a grammar, in sense of a ‘generative
grammar’

* cannot be said to define a language, unlike a context free
grammar

* any structure is valid, job of probabilistic model to
differentiate between poor and good alternatives

* However, very practical and closely matches what we
want from a parser (most often predicates &
arguments)

12

COMP90042 W.S.T.A. (S1 2019)

L19

Dependency treebanks

A few dependency treebanks
* Czech, Arabic, Danish, Dutch, Greek, Turkish ...

Many more phrase-structure treebanks, which can be
converted into dependencies

More recently, Universal Dependency Treebank

* collates >100 treebanks, >60 languages

* unified part-of-speech, morphology labels, relation types
* consistent handling of conjunctions and other tricky cases

http://universaldependencies.org/

13

http://universaldependencies.org/

COMP90042 W.S.T.A. (S1 2019) L19

Treebank conversion

* Some treebanks automatically converted into
dependencies

* using various heuristics, e.g., head-finding rules

+ often with manual correction

| root | %\

(sbi}
[w
) v v

Vinken will join the board as a nonexecutive director Nov 29

14

COMP90042 W.S.T.A. (S1 2019) L19

Examples from treebanks

* Danish DDT includes additional ‘subject’ link for verbs

A

mod subj pnc j mod b]

Dansk kultur skal skabes , forvaltes , plejes og forkaeles af os danskere
AN NC VA VA XP XP VA CC SP PP
4 5 6 7 8 9 10 11 12 13 14 15 16 17

[subj]

// http://www.buch-kromann.dk/matthias/ddt1.0/
* METU-Sabanci Turkish treebank

* edges between morphological units, not just words (-,+)

Det Subj Subj
Mod Mod Mod Obf\/[i l
| O
~ !
(Buleski @)ahge -de kl}[gul tin| [boyle]{[buyu}@ne siherkes— i|[goKetkile-di]
D AD] N AD] N ADV VN PN ADV V

Oflazer, Kemal, et al. "Building a Turkish treebank." Treebanks. Springer, 2003. 261-277. 15

COMP90042 W.S.T.A. (S1 2019) L19

Dependency parsing

* Parsing: task of finding the best structure for a given
Input sentence

* i.e., arg max, score(t/w)

* Two main approaches:

* graph-based: uses chart over possible parses, and dynamic
programming to solve for the maximum

* transition-based: treats problem as incremental sequence
of decisions over next action in a state machine

16

COMP90042 W.S.T.A. (S1 2019)

L19

Transition based parsing

* Frames parsing as sequence of simple parsing
transitions

* maintain two data structures

* buffer = input words yet to be processed

* stack = head words currently being processed

* two types of transitions
* shift = move word from buffer on to top of stack

* arc = add arc (left/right) between top two items on stack
(and remove dependent from stack)

17

COMP90042 W.S.T.A. (S1 2019)

L19

Transition based parsing algorithm

* For each word in input (buffer)
* shift current word from buffer onto stack

+ while there are 2 or more items on stack:

e either:

— a) add an arc (left or right) between top two items, and remove the
dependent; or

— b) continue to outer loop

* Finished when buffer empty & stack has only 1 item

* Always results in a projective tree

18

COMP90042 W.S.T.A. (S1 2019)

L19

Example

Buffer Stack Action
| shot an elephant in my pyjamas Shift
shot an elephant in my pyjamas | | Shift
an elephant in my pyjamas | | shot Arc-left
an elephant in my pyjamas | shot Shift
elephant in my pyjamas shot, an Shift
In my pyjamas | shot, an, elephant | Arc-left
in my pyjamas | shot, elephant Arc-right
in my pyjamas | shot Shift
shot <done>

L
Generated parse: | shot

—~
an elephant

. a.

in my pyjamas

19

COMP90042 W.S.T.A. (S1 2019) L19

Transition based parsing models

* How do we know when to arc and whether to add
left or right facing arcs?

* Use a scoring function, score(buffer, stack, transition),
based on the state, i.e.,
* the next word(s) in the buffer
* the contents of the stack, particularly the top two items

* the transition type, one of {continue, arc-left, arc-right}

* Then select the transition with the highest score
(greedy search)

20

COMP90042 W.S.T.A. (S1 2019)

L19

Transition based scoring

* Form a feature representation for the state

* Example features, ¢

stac
stac
stac
stac

* ¥ X %

K top
K top
K top

K top

nas tag NN & next in stac
nas tag NN & next in stac
nas tag NN & next in stac

nas tag JJ & next in stack

K has tag DT & transition = arc-left]
K has tag DT & transition = arc-right]
kis “has” & transition = arc-right]

has tag DT & transition = shift]

* Have a weight for each feature, w

* such that the parser can choose between the possible
transitions (e.g., arc-left, arc-right, shift)

Fig from Goldberg & Nivre (2012) 21

COMP90042 W.S.T.A. (S1 2019) L19

Training a Transition-based Dep Parser

 How to learn the feature weights from data?
Perceptron training (Goldberg & Nivre, COLING 2012)
* uses an “oracle” sequence of parser actions

* predict next action

N sequence, a nd Algorithm 2 Online training with a static oracle
1: w20
update when 2: for] =1 — ITERATIONS dO
model dis agrees 3: for sentence x with gold tree G,,4 in corpus do
: : 4: ¢ < cs(x)
with gOId action 5: while c is not terminal do
6: t, < argmax, w- ¢(c, t)
7: t, < 0(c, Ggora)
8: if t, # t, then
9: we—w+ ¢(c,t,)— ¢(c,t,)

10: c—t,(c)
11: return w

22

COMP90042 W.S.T.A. (S1 2019) L19

Graph based parsing

Dependency parsing using dynamic programming...
* Can consider as a CFG, where lexical items (heads) are non-
terminals

E.g., production shot
shot - shot in /\
means arc-right from i shot
“shot” to “in” |
1 /\
The head is carried up shot
in the tree. TN /\
shot elephant pyjamas
* Score of parse assumed 3h|0t a@ham z!n m@mas

to decompose into | | | |
pairwise dependencies an elephant my pyjamas

23

COMP90042 W.S.T.A. (S1 2019) L19

Graph based parsing

* Naive method for using CYK inefficient
* Parsing complexity O(n>)

* split encoding allows processing of left or right dependents
separately, leading to O(n3) runtime (Johnson, 2017)

* Alternatively can use Chiu-Liu-Edmond’s algorithm

* minimum cost arborescence (spanning tree)

24

COMP90042 W.S.T.A. (S1 2019) L19

A final word

* Dependency parsing a compelling, alterative,
formulation to constituency parsing

+ structures based on words as internal nodes

* edges encode word-word syntactic and semantic relations

+ often this is the information we need for other tasks!

* Transition-based parsing algorithm

* as sequence of shift and arc actions

* Graph-based parsing

* uses classic dynamic programming methods
(similar to CYK)

25

COMP90042 W.S.T.A. (S1 2019)

L19

* J&M3 Ch. 13

Required Reading

26

