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Ambiguity in parsing

• Context-free grammars assign hierarchical structure 
to language
* Linguistic notion of a ‘syntactic constituent’
* Formulated as generating all strings in the language; or
* Predicting the structure(s) for a given string

• Raises problem of ambiguity, e.g., which is better?
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Outline

• Probabilistic context-free grammars (PCFGs)

• Parsing using dynamic programming

• Limitations of ‘context-free’ assumption and some 
solutions:
* parent annotation
* head lexicalisation
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Basics of Probabilistic CFGs

• As for CFGs, same symbol set:
* Terminals: words such as book
* Non-terminal: syntactic labels such as NP or NN

• Same productions (rules)
* LHS non-terminal → ordered list of RHS symbols 

• In addition, store a probability with each production
* NP → DT NN [p = 0.45]
* NN → cat [p = 0.02]
* NN → leprechaun [p = 0.00001]
* …



5

COMP90042 W.S.T.A. (S1 2019) L18

Probabilistic CFGs

• Probability values denote conditional
* Pr(RHS | LHS)

• Consequently they:
* must be positive values, between 0 and 1
* must sum to one for given LHS

• E.g., 
* NN → aadvark [p = 0.0003]
* NN → cat [p = 0.02]
* NN → leprechaun [p = 0.0001]
* ∑x Pr(NN → x | NN) = 1
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A Probabilistic grammar

Source JM3, Fig 12.1

12.1 • PROBABILISTIC CONTEXT-FREE GRAMMARS 3

Grammar Lexicon
S ! NP VP [.80] Det ! that [.10] | a [.30] | the [.60]
S ! Aux NP VP [.15] Noun ! book [.10] | flight [.30]
S ! VP [.05] | meal [.015] | money [.05]
NP ! Pronoun [.35] | flight [.40] | dinner [.10]
NP ! Proper-Noun [.30] Verb ! book [.30] | include [.30]
NP ! Det Nominal [.20] | prefer [.40]
NP ! Nominal [.15] Pronoun ! I [.40] | she [.05]
Nominal ! Noun [.75] | me [.15] | you [.40]
Nominal ! Nominal Noun [.20] Proper-Noun ! Houston [.60]
Nominal ! Nominal PP [.05] | NWA [.40]
VP ! Verb [.35] Aux ! does [.60] | can [40]
VP ! Verb NP [.20] Preposition ! from [.30] | to [.30]
VP ! Verb NP PP [.10] | on [.20] | near [.15]
VP ! Verb PP [.15] | through [.05]
VP ! Verb NP NP [.05]
VP ! VP PP [.15]
PP ! Preposition NP [1.0]

Figure 12.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. ??. These probabilities were made up for pedagogical purposes
and are not based on a corpus (since any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

How are PCFGs used? A PCFG can be used to estimate a number of useful
probabilities concerning a sentence and its parse tree(s), including the probability of
a particular parse tree (useful in disambiguation) and the probability of a sentence
or a piece of a sentence (useful in language modeling). Let’s see how this works.

12.1.1 PCFGs for Disambiguation
A PCFG assigns a probability to each parse tree T (i.e., each derivation) of a sen-
tence S. This attribute is useful in disambiguation. For example, consider the two
parses of the sentence “Book the dinner flight” shown in Fig. 12.2. The sensible
parse on the left means “Book a flight that serves dinner”. The nonsensical parse
on the right, however, would have to mean something like “Book a flight on behalf
of ‘the dinner”’ just as a structurally similar sentence like “Can you book John a
flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi ! RHSi:

P(T,S) =
nY

i=1

P(RHSi|LHSi) (12.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T ). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T )P(S|T ) (12.3)

flights
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Stochastic Generation with PCFGs

Déjà vu, it’s almost the same as for CFG, with one twist:

1. Start with S, the sentence symbol

2. Choose a rule with S as the LHS
* Randomly select a RHS according to Pr(RHS | LHS)

e.g., S → VP
* Apply this rule, e.g., substitute VP for S

3. Repeat step 2 for each non-terminal in the string 
(here, VP) 

4. Stop when no non-terminals remain

Gives us a tree, as before, with a sentence as the yield
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How likely is a tree?

• Given a tree, we can compute its probability
* Decomposes into probability of each production

• E.g., for tree on right, 
* P(tree) = 

P(S → VP) ×
P(VP → Verb NP) ×
P(Verb → Book) ×
P(NP → Det Nominal) ×
P(Det → the) ×
P(Nominal → Nominal Noun) ×
P(Nominal → Noun) ×
P(Noun → dinner) ×
P(Noun → flight) = 2.16 × 10-6

DR
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Rules P Rules P
S → VP .05 S → VP .05
VP → Verb NP .20 VP → Verb NP NP .10
NP → Det Nominal .20 NP → Det Nominal .20
Nominal → Nominal Noun .20 NP → Nominal .15
Nominal → Noun .75 Nominal → Noun .75

Nominal → Noun .75
Verb → book .30 Verb → book .30
Det → the .60 Det → the .60
Noun → dinner .10 Noun → dinner .10
Noun → flights .40 Noun → flights .40

Figure 14.2 Two parse trees for an ambiguous sentence, The transitive parse (a) cor-
responds to the sensible meaning “Book flights that serve dinner”, while the ditransitive
parse (b) to the nonsensical meaning “Book flights on behalf of ‘the dinner’”.

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus leading to:

T̂ (S) = argmax
Ts.t.S=yield(T )

P(T,S)
P(S)

(14.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be a
constant for each tree, so we can eliminate it:

T̂ (S) = argmax
Ts.t.S=yield(T )

P(T,S)(14.7)

Furthermore, since we showed above that P(T,S) = P(T ), the final equation for
choosing the most likely parse neatly simplifies to choosing the parse with the highest
probability:

T̂ (S) = argmax
Ts.t.S=yield(T )

P(T )(14.8)

I.e., .05 * .2 * .3 * .2 * .6 * .2 * .75 * .1 * .4
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Resolving parse ambiguity

• Can select between different trees based on P(T)

• P = 2.16 × 10-6 P = 3.04 × 10-7

Source: JM3 
Fig 12.2

Mistakes in 
textbook

4 CHAPTER 13 • STATISTICAL PARSING

But since a parse tree includes all the words of the sentence, P(S|T ) is 1. Thus,

P(T,S) = P(T )P(S|T ) = P(T ) (13.4)

S
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Book

S
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flight
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Verb

Book

Rules P Rules P
S ! VP .05 S ! VP .05
VP ! Verb NP .20 VP ! Verb NP NP .10
NP ! Det Nominal .20 NP ! Det Nominal .20
Nominal ! Nominal Noun .20 NP ! Nominal .15
Nominal ! Noun .75 Nominal ! Noun .75

Nominal ! Noun .75
Verb ! book .30 Verb ! book .30
Det ! the .60 Det ! the .60
Noun ! dinner .10 Noun ! dinner .10
Noun ! flight .40 Noun ! flight .40

Figure 13.2 Two parse trees for an ambiguous sentence. The transitive parse on the left
corresponds to the sensible meaning “Book a flight that serves dinner”, while the ditransitive
parse on the right corresponds to the nonsensical meaning “Book a flight on behalf of ‘the
dinner’ ”.

We can compute the probability of each of the trees in Fig. 13.2 by multiplying
the probabilities of each of the rules used in the derivation. For example, the proba-
bility of the left tree in Fig. 13.2a (call it Tle f t ) and the right tree (Fig. 13.2b or Tright )
can be computed as follows:

P(Tle f t) = .05⇤ .20⇤ .20⇤ .20⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 2.2⇥10�6

P(Tright) = .05⇤ .10⇤ .20⇤ .15⇤ .75⇤ .75⇤ .30⇤ .60⇤ .10⇤ .40 = 6.1⇥10�7

We can see that the left (transitive) tree in Fig. 13.2 has a much higher probability
than the ditransitive tree on the right. Thus, this parse would correctly be chosen by
a disambiguation algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.Yield

.05*.05*.20*.15*.75*.75*.30*.60*.10*.40
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Parsing PCFGs

• Instead of selecting between two trees, can we select 
a tree from the set of all possible trees?

• Before we looked at 
* CYK and Early
* for unweighted grammars (CFGs)
* finds all possible trees

• But there are often 1000s, many completely 
nonsensical

• Can we solve for the most probable tree?
arg maxT s.t. yield(T )=w P (T )

<latexit sha1_base64="JOAuuueNWHKU5nPcMqrrXNKLH/U="></latexit><latexit sha1_base64="JOAuuueNWHKU5nPcMqrrXNKLH/U="></latexit><latexit sha1_base64="JOAuuueNWHKU5nPcMqrrXNKLH/U=">AAACNXicbVBNS+tAFJ348dTqe1Zduhksgm5C8hB0IxTduHBRoVWhKWUyvamDk0yYudGWkP4oN/4PV7pwoYhb/4KT2oVfBwYO59zLnHvCVAqDnvfgTE3PzP6Zm1+oLC79/bdcXVk9NSrTHFpcSaXPQ2ZAigRaKFDCeaqBxaGEs/DysPTPrkAboZImDlPoxKyfiEhwhlbqVo8DlYJmqHTCYsiZ7o9iNii6eZMGcagG+ci46I4KGiAMMB8KkL1iq7lN963P8CKM8uuioI1SqnSrNc/1xqA/iT8hNTJBo1u9C3qKZzEkyCUzpu17KXZsChRcQlEJMgMp45esD21Ly4imk4+vLuimVXo0Utq+BOlY/byRs9iYYRzayTKp+e6V4m9eO8Nor5OLJM0QEv7xUZRJioqWFdKe0MBRDi1hXAublfILphlHW3RZgv/95J/k9L/re65/slOrH0zqmCfrZINsEZ/skjo5Ig3SIpzckHvyRJ6dW+fReXFeP0annMnOGvkC5+0dDOWsBA==</latexit><latexit sha1_base64="JOAuuueNWHKU5nPcMqrrXNKLH/U="></latexit>
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CYK for PCFGS

• CYK finds all trees for a sentence; we want best tree

• Prob. CYK follows similar process to standard CYK

• Convert grammar to Chomsky Normal Form (CNF)
* E.g., VP → Verb NP NP [0.05]

becomes VP → Verb NP+NP [____]
NP+NP → NP NP [____]

where NP+NP is a new symbol.

• Issues with unary productions (see ipython notebook)
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Source: JM3 
Ch 12

12.3 • WAYS TO LEARN PCFG RULE PROBABILITIES 7

function PROBABILISTIC-CKY(words,grammar) returns most probable parse
and its probability

for j from 1 to LENGTH(words) do
for all { A | A ! words[ j] 2 grammar}

table[ j�1, j,A] P(A! words[ j])
for i from j�2 downto 0 do

for k i+1 to j�1 do
for all { A | A ! BC 2 grammar,

and table[i,k,B] > 0 and table[k, j,C] > 0 }
if (table[i,j,A] < P(A ! BC) ⇥ table[i,k,B] ⇥ table[k,j,C]) then

table[i,j,A] P(A ! BC) ⇥ table[i,k,B] ⇥ table[k,j,C]
back[i,j,A] {k,B,C}

return BUILD TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

Figure 12.3 The probabilistic CKY algorithm for finding the maximum probability parse
of a string of num words words given a PCFG grammar with num rules rules in Chomsky
normal form. back is an array of backpointers used to recover the best parse. The build tree
function is left as an exercise to the reader.

Like the basic CKY algorithm, the probabilistic CKY algorithm as shown in
Fig. 12.3 requires a grammar in Chomsky normal form. Converting a probabilistic
grammar to CNF requires that we also modify the probabilities so that the probability
of each parse remains the same under the new CNF grammar. Exercise 12.2 asks
you to modify the algorithm for conversion to CNF in Chapter 11 so that it correctly
handles rule probabilities.

In practice, a generalized CKY algorithm that handles unit productions directly
is typically used. Recall that Exercise 13.3 asked you to make this change in CKY;
Exercise 12.3 asks you to extend this change to probabilistic CKY.

Let’s see an example of the probabilistic CKY chart, using the following mini-
grammar, which is already in CNF:

S ! NP VP .80 Det ! the .40
NP ! Det N .30 Det ! a .40
V P ! V NP .20 N ! meal .01

V ! includes .05 N ! f light .02

Given this grammar, Fig. 12.4 shows the first steps in the probabilistic CKY
parse of the following example:

(12.17) The flight includes a meal

12.3 Ways to Learn PCFG Rule Probabilities

Where do PCFG rule probabilities come from? There are two ways to learn proba-
bilities for the rules of a grammar. The simplest way is to use a treebank, a corpus
of already parsed sentences. Recall that we introduced in Chapter 10 the idea of
treebanks and the commonly used Penn Treebank (Marcus et al., 1993), a collec-
tion of parse trees in English, Chinese, and other languages that is distributed by the
Linguistic Data Consortium. Given a treebank, we can compute the probability of
each expansion of a non-terminal by counting the number of times that expansion

Prob. CYK
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a position k, the first constituent [i,k] must lie to the left of entry [i, j] somewhere
along row i, and the second entry [k, j] must lie beneath it, along column j.

To make this more concrete, consider the following example with its completed
parse matrix, shown in Fig. 11.4.

(11.3) Book the flight through Houston.

The superdiagonal row in the matrix contains the parts of speech for each input word
in the input. The subsequent diagonals above that superdiagonal contain constituents
that cover all the spans of increasing length in the input.

Book the flight through Houston

S, VP, Verb, 
Nominal, 
Noun

S,VP,X2 S,VP,X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Figure 11.4 Completed parse table for Book the flight through Houston.

Given this setup, CKY recognition consists of filling the parse table in the right
way. To do this, we’ll proceed in a bottom-up fashion so that at the point where
we are filling any cell [i, j], the cells containing the parts that could contribute to
this entry (i.e., the cells to the left and the cells below) have already been filled.
The algorithm given in Fig. 11.5 fills the upper-triangular matrix a column at a time
working from left to right, with each column filled from bottom to top, as the right
side of Fig. 11.4 illustrates. This scheme guarantees that at each point in time we
have all the information we need (to the left, since all the columns to the left have
already been filled, and below since we’re filling bottom to top). It also mirrors on-
line parsing since filling the columns from left to right corresponds to processing
each word one at a time.

function CKY-PARSE(words, grammar) returns table

for j from 1 to LENGTH(words) do

for all {A | A ! words[ j] 2 grammar}
table[ j�1, j] table[ j�1, j] [ A

for i from j�2 downto 0 do

for k i+1 to j�1 do

for all {A | A ! BC 2 grammar and B 2 table[i,k] and C 2 table[k, j]}
table[i,j] table[i,j] [ A

Figure 11.5 The CKY algorithm.12.3 • WAYS TO LEARN PCFG RULE PROBABILITIES 7

function PROBABILISTIC-CKY(words,grammar) returns most probable parse
and its probability

for j from 1 to LENGTH(words) do
for all { A | A ! words[ j] 2 grammar}

table[ j�1, j,A] P(A! words[ j])
for i from j�2 downto 0 do

for k i+1 to j�1 do
for all { A | A ! BC 2 grammar,

and table[i,k,B] > 0 and table[k, j,C] > 0 }
if (table[i,j,A] < P(A ! BC) ⇥ table[i,k,B] ⇥ table[k,j,C]) then

table[i,j,A] P(A ! BC) ⇥ table[i,k,B] ⇥ table[k,j,C]
back[i,j,A] {k,B,C}

return BUILD TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

Figure 12.3 The probabilistic CKY algorithm for finding the maximum probability parse
of a string of num words words given a PCFG grammar with num rules rules in Chomsky
normal form. back is an array of backpointers used to recover the best parse. The build tree
function is left as an exercise to the reader.

Like the basic CKY algorithm, the probabilistic CKY algorithm as shown in
Fig. 12.3 requires a grammar in Chomsky normal form. Converting a probabilistic
grammar to CNF requires that we also modify the probabilities so that the probability
of each parse remains the same under the new CNF grammar. Exercise 12.2 asks
you to modify the algorithm for conversion to CNF in Chapter 11 so that it correctly
handles rule probabilities.

In practice, a generalized CKY algorithm that handles unit productions directly
is typically used. Recall that Exercise 13.3 asked you to make this change in CKY;
Exercise 12.3 asks you to extend this change to probabilistic CKY.

Let’s see an example of the probabilistic CKY chart, using the following mini-
grammar, which is already in CNF:

S ! NP VP .80 Det ! the .40
NP ! Det N .30 Det ! a .40
V P ! V NP .20 N ! meal .01

V ! includes .05 N ! f light .02

Given this grammar, Fig. 12.4 shows the first steps in the probabilistic CKY
parse of the following example:

(12.17) The flight includes a meal

12.3 Ways to Learn PCFG Rule Probabilities

Where do PCFG rule probabilities come from? There are two ways to learn proba-
bilities for the rules of a grammar. The simplest way is to use a treebank, a corpus
of already parsed sentences. Recall that we introduced in Chapter 10 the idea of
treebanks and the commonly used Penn Treebank (Marcus et al., 1993), a collec-
tion of parse trees in English, Chinese, and other languages that is distributed by the
Linguistic Data Consortium. Given a treebank, we can compute the probability of
each expansion of a non-terminal by counting the number of times that expansion

chart now stores
probabilities for each
span and symbol

CYK can be thought 
of as storing all events
with probability = 1

validity test now looks to
see that the child chart cells
have non-zero probability

Instead of storing set
of symbols, store the 
probability of best scoring
tree fragment covering span 
[i,j] with root symbol A

Overwrite lower scoring
analysis if this one is better,
and record the best production.
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Illustration
we eat sushi with chopsticks

S → NP VP 1

NP → NP PP ½ 

→ we ¼
→ sushi 1/8
→ chopsticks 1/8

PP → IN NP 1

IN → with 1
VP → V NP ½ 

→ VP PP ¼
→ MD V ¼

V → eat 1 Example & grammar from E18 Chapter 10
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Illustration
we eat sushi with chopsticks

NP      1/4

Example & grammar from E18 Chapter 10

S → NP VP 1

NP → NP PP ½ 

→ we ¼
→ sushi 1/8
→ chopsticks 1/8

PP → IN NP 1

IN → with 1
VP → V NP ½ 

→ VP PP ¼
→ MD V ¼

V → eat 1
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Illustration
we eat sushi with chopsticks

NP      1/4

V      1

Example & grammar from E18 Chapter 10

S → NP VP 1

NP → NP PP ½ 

→ we ¼
→ sushi 1/8
→ chopsticks 1/8

PP → IN NP 1

IN → with 1
VP → V NP ½ 

→ VP PP ¼
→ MD V ¼

V → eat 1
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Illustration
we eat sushi with chopsticks

NP      1/4

V      1

NP  1/8

Example & grammar from E18 Chapter 10

S → NP VP 1

NP → NP PP ½ 

→ we ¼
→ sushi 1/8
→ chopsticks 1/8

PP → IN NP 1

IN → with 1
VP → V NP ½ 

→ VP PP ¼
→ MD V ¼

V → eat 1



18

COMP90042 W.S.T.A. (S1 2019) L18

Illustration
we eat sushi with chopsticks

NP      1/4

V      1 VP 
1/8 * 1 * ½ = 1/16

NP  1/8

Example & grammar from E18 Chapter 10

S → NP VP 1

NP → NP PP ½ 

→ we ¼
→ sushi 1/8
→ chopsticks 1/8

PP → IN NP 1

IN → with 1
VP → V NP ½ 

→ VP PP ¼
→ MD V ¼

V → eat 1
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Illustration
we eat sushi with chopsticks

NP      1/4 S 1/64

V      1 VP 1/16

NP  1/8

IN 1

Example & grammar from E18 Chapter 10

S → NP VP 1

NP → NP PP ½ 

→ we ¼
→ sushi 1/8
→ chopsticks 1/8

PP → IN NP 1

IN → with 1
VP → V NP ½ 

→ VP PP ¼
→ MD V ¼

V → eat 1

Fixed mistake after
the lecture (S for 
span 0,3 = we eat 
sushi)
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Illustration
we eat sushi with chopsticks

NP      1/4 S 1/64

V      1 VP 1/16

NP  1/8

IN 1

NP 1/8

Example & grammar from E18 Chapter 10

S → NP VP 1

NP → NP PP ½ 

→ we ¼
→ sushi 1/8
→ chopsticks 1/8

PP → IN NP 1

IN → with 1
VP → V NP ½ 

→ VP PP ¼
→ MD V ¼

V → eat 1
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Illustration
we eat sushi with chopsticks

NP      1/4 S 1/64

V      1 VP 1/16

NP  1/8

IN 1 PP 1/8

NP 1/8

Example & grammar from E18 Chapter 10

S → NP VP 1

NP → NP PP ½ 

→ we ¼
→ sushi 1/8
→ chopsticks 1/8

PP → IN NP 1

IN → with 1
VP → V NP ½ 

→ VP PP ¼
→ MD V ¼

V → eat 1
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Illustration
we eat sushi with chopsticks

NP      1/4 S 1/64

V      1 VP 1/16

NP  1/8 NP 1/128

IN 1 PP 1/8

NP 1/8

Example & grammar from E18 Chapter 10

S → NP VP 1

NP → NP PP ½ 

→ we ¼
→ sushi 1/8
→ chopsticks 1/8

PP → IN NP 1

IN → with 1
VP → V NP ½ 

→ VP PP ¼
→ MD V ¼

V → eat 1
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S → NP VP 1

NP → NP PP ½ 

→ we ¼
→ sushi 1/8
→ chopsticks 1/8

PP → IN NP 1

IN → with 1
VP → V NP ½ 

→ VP PP ¼
→ MD V ¼

V → eat 1

Illustration
we eat sushi with chopsticks

NP      1/4 S 1/64

V      1 VP 1/16 VP 
½ * 1 * 1/128 = 

1/256

NP  1/8 NP 1/128

IN 1 PP 1/8

NP 1/8

Example & grammar from E18 Chapter 10

1/256 > 1/512 
→ this is a better 

analysis, so replace 
old value
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Illustration
we eat sushi with chopsticks

NP      1/4

V      1 VP 1/16 VP 1/256

NP  1/8 NP 1/128

IN 1 PP 1/8

NP 1/8

Example & grammar from E18 Chapter 10

S → NP VP 1

NP → NP PP ½ 

→ we ¼
→ sushi 1/8
→ chopsticks 1/8

PP → IN NP 1

IN → with 1
VP → V NP ½ 

→ VP PP ¼
→ MD V ¼

V → eat 1
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Illustration
we eat sushi with chopsticks

NP      1/4 S 1/64 S 1/1024

V      1 VP 1/16 VP 1/256

NP  1/8 NP 1/128

IN 1 PP 1/8

NP 1/8

Example & grammar from E18 Chapter 10

S → NP VP 1

NP → NP PP ½ 

→ we ¼
→ sushi 1/8
→ chopsticks 1/8

PP → IN NP 1

IN → with 1
VP → V NP ½ 

→ VP PP ¼
→ MD V ¼

V → eat 1

Fixed mistake after
the lecture
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Prob CYK: Retrieving The parses

• S in the top-right corner of parse table indicates 
success

• Retain back-pointer to best analysis
* for each chart cell, store the split point and the non-

terminal for the left and right children

• To get parse(s), follow pointers back for each match

• Convert back from CNF by removing new non-
terminals
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Complexity of CYK

• What’s the space and time complexity of this 
algorithm?
* in terms of n the length of the input sentence
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Problems with (P)CFGs

• poor independence assumptions: rewrite decisions 
made independently, whereas inter-dependence is often 
needed to capture global structure. 
* E.g., NP → PRP used often as subject (first NP), much less often 

as object (second NP)

• lack of lexical conditioning: non-terminals representation 
behaviour of the actual words, but are much too coarse. 
Problems with
* preposition attachment ambiguity;
* subcategorisation ([forgot NP] vs [forgot S]);
* coordinate structure ambiguities (dogs in houses and cats)
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PP Attachment

• Consider sentences (PP shown bracketed)
(1) Workers dumped sacks [into bin].
(2) Fishermen caught tons [of herring].

• Both have same POS tag sequence, but different 
structure
* PP attaches either high (to the verb) or low (to the noun)
* how to make this attachment decision? Difference between 

the two analyses comes down to rules:
• VP → Verb NP PP vs.   VP → Verb NP; NP → NP PP

• The probabilities of these three rules drive attachment, 
irrespective of the verb, preposition and noun
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One solution: parent conditioning

• Make non-terminals more explicit by incorporating 
parent symbol into each symbol

• NP^S represents subject position (left); NP^VP denotes 
object position (right); PP^VP is different to PP^NP

• Helps to make general tags more specific, used for a 
number of different purposes, e.g., He said that I saw …

S

VP

PP

NP

N

bin

P

into

NP

N

sacks

V

dumped

NP

N

Workers

S

VPˆS

PPˆVP

NPˆPP

N

bin

P

into

NPˆVP

N

sacks

V

dumped

NPˆS

N

Workers
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Another solution: Head Lexicalisation

• Record head word with parent symbols
* the most salient child of a constituent, usually the noun in a 

NP, verb in a VP etc

•

* head words not shown for POS
* VP → V NP PP ⇒

VP(dumped) → V(dumped) NP(sacks) PP(into)

S

VP

PP

NP

N

bin

P

into

NP

N

sacks

V

dumped

NP

N

Workers

workers

intosacks

dumped

bin
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Head lexicalisation

• Incorporate head words into productions, such that 
the most important links between words is captured
* rule captures correlations between head tokens of phrases

• Grammar symbol inventory expands massively!
* Many of the productions much too specific, seen very 

rarely
* Learning more involved to avoid sparsity problems 

(e.g., zero probabilities)
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A final word

• PCFGs widely used, and are some of the best 
performing parsers available. E.g.,
* Collins parser, Berkeley parser, Stanford parser 
* all use some form of lexicalisation or change to non-

terminal set with CFGs

• But not used universally, a competing method is to 
treat parsing as a sequential process of “transitions” 
* next week, dependency parsing
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Required Reading

• J&M3 Ch. 12 – 12.6 
* Warning: several errors in the computations, and grammar 

used for PCYK is not in CNF


