Probabilistic Parsing

COMP90042 LECTURE 18

| THE UNIVERSITY OF

MELBOURNEL

COMP90042 W.S.T.A. (S1 2019) L18

Ambiguity in parsing

* Context-free grammars assign hierarchical structure
to language
* Linguistic notion of a ‘syntactic constituent’

* Formulated as generating all strings in the language; or

* Predicting the structure(s) for a given string

* Raises problem of ambiguity, e.g., which is better?

2

/\ /\
- VP NP VP
/"N] T VAN T T~
DT NN VBG NP PP DT NN VBG NP
I N RN I _—] T—
the rat ate DT NN IN NP the rat ate DT NN PP
| | || | | N
the cheese with PRP the cheese IN NP
| | |
me with PRP

| 2

me

COMP90042 W.S.T.A. (S1 2019) L18

Outline

* Probabilistic context-free grammars (PCFGs)
* Parsing using dynamic programming

* Limitations of ‘context-free’ assumption and some
solutions:
* parent annotation

+* head lexicalisation

COMP90042 W.S.T.A. (S1 2019) L18

Basics of Probabilistic CFGs

* As for CFGs, same symbol set:

* Terminals: words such as book
* Non-terminal: syntactic labels such as NP or NN

* Same productions (rules)
* LHS non-terminal - ordered list of RHS symbols

* |n addition, store a probability with each production
* NP - DT NN p=0.45
* NN = cat p=0.02]
* NN - leprechaun p =0.00001]
X

COMP90042 W.S.T.A. (S1 2019)

L18

Probabilistic CFGs

* Probability values denote conditional

+ Pr(RHS | LHS)

* Consequently they:

* must be positive values, between 0 and 1
* must sum to one for given LHS

* E.g,,
* NN — aadvark
* NN - cat
* NN = leprechaun
> Pr(NN 2> x [NN) =1

p =0.0003]
p =0.02]

p =0.0001]

COMP90042 W.S.T.A. (S1 2019) L18

A Probabilistic grammar

Grammar Lexicon
S — NPVP .80 Det — that [.10] | a[.30] | the [.60]
S — Aux NP VP .15] Noun — book [.10] | flights [.30]
S — VP .05 | meal |.015] | money [.05]
NP — Pronoun .35 | flight [.40] | dinner |.10]
NP — Proper-Noun .30 Verb — book [.30] | include |.30]
NP — Det Nominal .20 prefer [.40]
NP — Nominal .15 Pronoun — 1I[.40] | she [.05]
Nominal — Noun .75 me |.15] | you [.40]
Nominal — Nominal Noun |.20 Proper-Noun — Houston |.60)
Nominal — Nominal PP [.05 NWA [.40]
VP — Verb .35 Aux — does [.60] | can [40)]
VP — Verb NP .20 Preposition — from |.30] | to [.30]
VP — Verb NP PP . 10] | on [.20] | near [.15]
VP — Verb PP .15] | through [.05]
VP — Verb NP NP .05
VP — VP PP 15
PP — Preposition NP 1.0

Source JM3, Fig 12.1

COMP90042 W.S.T.A. (S1 2019) L18

Stochastic Generation with PCFGs

Déja vu, it’s almost the same as for CFG, with one twist:
1. Start with S, the sentence symbol

2. Choose a rule with S as the LHS

* Randomly select a RHS according to Pr(RHS | LHS)
e.g.,S—> VP

* Apply this rule, e.g., substitute VP for S

3. Repeat step 2 for each non-terminal in the string
(here, VP)

4. Stop when no non-terminals remain

Gives us a tree, as before, with a sentence as the yield

COMP90042 W.S.T.A. (S1 2019)

L18

How likely is a tree?

* Given a tree, we can compute its probability

* Decomposes into probability of each production

* E.g., for tree on right,
* P(tree) =

I

‘e.,

.05

P(S & VP) x

P(VP - Verb NP) x
P(Verb - Book) x

P(NP - Det Nominal) x
P(Det - the) x

P(Nominal = Nominal Noun) x

P(Nominal - Noun) x
P(Noun = dinner) x
P(Noun - flight) = 2.16 x 10°®

* 2 % 3 % 2 * (6 * .2

*
.

S

|
VP

TN

Verb NP

| /\

Book pet Nominal

| N

the Nominal Noun

| |
Noun flight

* .4 |

dinner

COMP90042 W.S.T.A. (S1 2019)

L18

Resolving parse ambiguity

* Can select between different trees based on P(T)

S

\
A

Book Det Nominal

/N

the Nominal Noun

Noun flight

dinner

P=2.16x10°

5 Source: IM3
‘ Fig 12.2
VP
Verb NP NP

/N

Book Det Nominal Nominal

the Noun Noun

Mistakes in
textbook

LO5*.05%.20*.15*.75*.75*.30*.60*.10*.40

dinner flight

P=3.04x10"

COMP90042 W.S.T.A. (S1 2019) L18

Parsing PCFGs

* |nstead of selecting between two trees, can we select
a tree from the set of all possible trees?

e Before we looked at
* CYK and Early

* for unweighted grammars (CFGs)
* finds all possible trees
* But there are often 1000s, many completely
nonsensical
arg Maxr g t. yield(T)=w 4 (1)
* Can we solve for the most probable tree

10

COMP90042 W.S.T.A. (S1 2019) L18

CYK for PCFGS

* CYK finds all trees for a sentence; we want best tree
* Prob. CYK follows similar process to standard CYK

* Convert grammar to Chomsky Normal Form (CNF)
* E.g., VP = Verb NP NP [0.05]

becomes VP = Verb NP+NP []
NP+NP = NP NP []

where NP+NP is a new symbol.

* Issues with unary productions (see ipython notebook)

11

COMP90042 W.S.T.A. (S1 2019) L18

Prob. CYK

function PROBABILISTIC-CKY (words, grammar) returns most probable parse
and 1ts probability
for j < from 1 to LENGTH(words) do
forall {A| A — words|j| € grammar}
table[j— 1, j,A]l < P(A — words|j])
for i< from j — 2 downto O do
for k<—i+1toj—1do
forall {A|A — BC € grammar,
and rableli,k,B] > 0 and rablelk,j,C] > 0}
if (table[i,j,A] < P(A — BC) X table[i,k,B] x table[k,j,C]) then

tableli,j,Al< P(A — BC) X tableli,k,B] x table[k,j,C]
backli,j,A]l <+ {k,B,C}

return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

IDTIVEPMR] The probabilistic CKY algorithm for finding the maximum probability parse

Source: JM3
Ch 12 12

chart now stores
probabilities for each
span and symbol

CYK can be thought
of as storing all events
with probability = 1

function CKY-PARSE(words, grammar) returns table

for j < from 1 to LENGTH(words) do
forall {A|A — words[j] € grammar}

table[j— 1, jl<table[j—1,j]UA
for i < from j —2 downto O do
fork<i+1toj—1do
forall {A|A — BC € grammar and B € tableli,k] and C € tablelk, j|}
tableli.j] < tablelij] U A

The CKY algorithm. validity test now looks to
see that the child chart cells
have non-zero probability

function PROBABILISTIC-CKY (words,grammar) returns most probable parse
anld its probability
for j < from 1 to LENGTH(words) do
forall {A| A — words|j| € grammar}
table[j— 1, j,Al< P(A — words|j])
for i < from j —2 downto O do
fork<—i+1toj—1do
forall { A|A — BC € grammar,
and rableli,k,B] > 0 and tablelk,j,C] > 0}
if (tableli,j,A] < P(A — BC) X table[i,k,B] x table[k,j,C]) then

tableli,j,A]<— P(A — BC) X tableli,k,B] x table[k,j,C]
backli.j,A]l < {k,B,C}

return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

DTV PRI The probabilistic CKY algorithm for finding the maximum probability parse

Instead of storing set

of symbols, store the
probability of best scoring
tree fragment covering span
[i,j] with root symbol A

Overwrite lower scoring

analysis if this one is better,
and record the best production.

13

COMP90042 W.S.T.A. (S1 2019)

L18

NP

PP

IN
VP

we eat sushi with chopsticks

— NP VP 1

- NP PP %

- we Y

— sushi 1/8

— chopsticks 1/8

— IN NP 1

—> with 1

—> V NP Z

- VP PP Y

-> MDYV Ya

> eat 1 Example & grammar from E18 Chapter 10

14

COMP90042 W.S.T.A. (S1 2019)

L18

NP

PP

IN
VP

we eat sushi with chopsticks
NP 1/4

- NP VP 1

- NP PP %

- we Y

— sushi 1/8

— chopsticks 1/8

— IN NP 1

—> with 1

—> V NP Z

- VP PP Y

-> MDYV Ya

> eat 1 Example & grammar from E18 Chapter 10

15

COMP90042 W.S.T.A. (S1 2019)

L18

NP

PP

IN
VP

lllustration
we eat sushi with chopsticks
NP 1/4

V 1
— NP VP 1
- NP PP %
- we Ya
— sushi 1/8
— chopsticks 1/8
— IN NP 1
—> with 1
—> V NP Z
- VP PP Y
- MDYV Ya
> eat 1 Example & grammar from E18 Chapter 10

16

COMP90042 W.S.T.A. (S1 2019)

L18

NP

PP

IN
VP

lllustration
we eat sushi with chopsticks
NP 1/4

V 1
— NP VP 1
> NP PP Y NP 1/8
- we Y
— sushi 1/8
— chopsticks 1/8
— IN NP 1
—> with 1
—> V NP Z
- VP PP Y
-> MDYV Ya
> eat 1 Example & grammar from E18 Chapter 10

17

COMP90042 W.S.T.A. (S1 2019)

L18

NP

PP

IN
VP

lllustration
we eat sushi with chopsticks
NP 1/4
V 1 VP
1/8*1* % =1/16

— NP VP 1
> NP PP Y NP 1/8
- we Y
— sushi 1/8
— chopsticks 1/8
— IN NP 1
—> with 1
—> V NP Z
- VP PP Y
-> MDYV Ya
> eat 1 Example & grammar from E18 Chapter 10

18

COMP90042 W.S.T.A. (S1 2019)

L18

NP

PP

IN
VP

Illustration
we eat sushi with chopsticks
NP 1/4 S1/64

v 1 VP 1/16
- NP VP 1
> NP PP A NP 1/8
- we Ya
— sushi 1/8
= chopsticks 1/8 Fixed mistake after IN1
= IN NP 1 the lecture (S for
-> with 1 span 0,3 = we eat
- V NP iZ SUShi)
- VP PP Ya
-> MDYV Va
> eat 1 Example & grammar from E18 Chapter 10

19

COMP90042 W.S.T.A. (S1 2019)

L18

NP

PP

IN
VP

lllustration
we eat sushi with chopsticks
NP 1/4 S1/64

vV 1 VP 1/16
—> NP VP 1
—> NP PP A NP 1/8
- we Ya
- sushi 1/8
— chopsticks 1/8 IN 1
—> IN NP 1
— with 1
S x NP 1/8
- VP PP Y
—-> MDV Va
> eat 1 Example & grammar from E18 Chapter 10

20

COMP90042 W.S.T.A. (S1 2019)

L18

NP

PP

IN
VP

lllustration
we eat sushi with chopsticks
NP 1/4 S1/64

V 1 VP 1/16
— NP VP 1
> NP PP % NP 1/8
- we Ya
— sushi 1/8
- chopsticks 1/8 IN 1 PP 1/8
— IN NP 1
—> with 1
Sune NP 1/8
— VP PP Ya
- MDYV Ya
> eat 1 Example & grammar from E18 Chapter 10 21

COMP90042 W.S.T.A. (S1 2019)

L18

NP

PP

IN
VP

lllustration
we eat sushi with chopsticks
NP 1/4 S1/64
V 1 VP 1/16
— NP VP 1
> NP PP % NP 1/8 NP 1/128
- we Ya
— sushi 1/8
- chopsticks 1/8 IN 1 PP 1/8
— IN NP 1
—> with 1
Sune NP 1/8
— VP PP Ya
- MDYV Ya
> eat 1 Example & grammar from E18 Chapter 10 22

COMP90042 W.S.T.A. (S1 2019)

L18

NP

PP

IN
VP

lllustration
we eat sushi with chopsticks
NP 1/4 S1/64
vV 1 VP 1/16 VP
%B*1*1/128 =
S NP VP 1 1/256
- NP PP Z
NP 1/8 NP 1/128
- we Y
— sushi 1/8
— chopsticks 1/8 1/256 > 1/512 N1 PP 1/8
= IN'NP 1 - this is a better
- with 1 analysis, so replace
- VNP 72 old value NP 1/8
- VP PP Ya
—-> MDYV Ya
> eat 1 Example & grammar from E18 Chapter 10 23

COMP90042 W.S.T.A. (S1 2019)

L18

NP

PP

IN
VP

lllustration
we eat sushi with chopsticks
NP 1/4

V 1 VP 1/16 VP 1/256
— NP VP 1
> NP PP % NP 1/8 NP 1/128
- we Ya
— sushi 1/8
- chopsticks 1/8 IN 1 PP 1/8
— IN NP 1
—> with 1
Sune NP 1/8
— VP PP Ya
- MDYV Ya
> eat 1 Example & grammar from E18 Chapter 10 24

COMP90042 W.S.T.A. (S1 2019)

L18

NP

PP

IN
VP

lllustration
we eat sushi with chopsticks
NP 1/4 S1/64 S1/1024
V 1 VP 1/16 VP 1/256
— NP VP 1
> NP PP % NP 1/8 NP 1/128
> we Y
— sushi 1/8
- chopsticks 1/8 Fixed mistake after IN 1 PP 1/8
—~ INNP 1 the lecture
- with 1
VNP y NP 1/8
- VP PP Ya
—-> MDYV Ya
> eat 1 Example & grammar from E18 Chapter 10

25

COMP90042 W.S.T.A. (S1 2019)

L18

Prob CYK: Retrieving The parses

S in the top-right corner of parse table indicates
success

Retain back-pointer to best analysis

* for each chart cell, store the split point and the non-
terminal for the left and right children

To get parse(s), follow pointers back for each match

Convert back from CNF by removing new non-
terminals

26

COMP90042 W.S.T.A. (S1 2019)

L18

Complexity of CYK

* What's the space and time complexity of this
algorithm?

* in terms of n the length of the input sentence

27

COMP90042 W.S.T.A. (S1 2019)

L18

Proble

* poor independence

ms with (P)CFGs

assumptions: rewrite decisions

made independently, whereas inter-dependence is often

needed to capture g

obal structure.

* E.g., NP - PRP used often as subject (first NP), much less often

as object (second N

)

* lack of lexical conditioning: non-terminals representation

behaviour of the act
Problems with

ual words, but are much too coarse.

* preposition attachment ambiguity;
* subcategorisation ([forgot NP] vs [forgot S]);
* coordinate structure ambiguities (dogs in houses and cats)

28

COMP90042 W.S.T.A. (S1 2019) L18

PP Attachment

* Consider sentences (PP shown bracketed)
(1) Workers dumped sacks [into bin].
(2) Fishermen caught tons [of herring].

* Both have same POS tag sequence, but different
structure
* PP attaches either high (to the verb) or low (to the noun)

+* how to make this attachment decision? Difference between
the two analyses comes down to rules:
e VP - Verb NP PP vs. VP = Verb NP; NP - NP PP

* The probabilities of these three rules drive attachment,
irrespective of the verb, preposition and noun

29

COMP90042 W.S.T.A. (S1 2019) L18

One solution: parent conditioning

* Make non-terminals more explicit by incorporating

parent symbol into each symbol S
S

/\ /\

NP VP NP"S VP"S

N A% NP PP N \Y% NP VP PP"VP
| N | N

Workers dumped T NP Workers dumped N P NP'PP

P
]
sacks into T sacks into N

* NPAS represents subject position (left); NPAVP denotes
object position (right); PPAVP is different to PPANP

* Helps to make general tags more specific, used for a
number of different purposes, e.g., He said that | saw ...

30

COMP90042 W.S.T.A. (S1 2019) L18

Another solution: Head Lexicalisation

* Record head word with parent symbols

* the most salient child of a constituent, usually the noun in a
NP, verb in a VP etc
S

o /\

NP VP

workers N
N Vv NP PP

‘ ‘ sacksAinto

Workers dumped N P NPb‘
‘ n

sacks into N

+ head words not shown for POS bin

« VP = V NP PP =
VP(dumped) - V(dumped) NP(sacks) PP(into)

31

COMP90042 W.S.T.A. (S1 2019) L18

Head lexicalisation

* |ncorporate head words into productions, such that
the most important links between words is captured

* rule captures correlations between head tokens of phrases

* Grammar symbol inventory expands massively!

* Many of the productions much too specific, seen very
rarely

* Learning more involved to avoid sparsity problems
(e.g., zero probabilities)

32

COMP90042 W.S.T.A. (S1 2019) L18

A final word

* PCFGs widely used, and are some of the best
performing parsers available. E.g.,

* Collins parser, Berkeley parser, Stanford parser

* all use some form of lexicalisation or change to non-
terminal set with CFGs

* But not used universally, a competing method is to
treat parsing as a sequential process of “transitions”

* next week, dependency parsing

33

COMP90042 W.S.T.A. (S1 2019) L18

Required Reading

* J&M3 Ch.12-12.6

* Warning: several errors in the computations, and grammar
used for PCYK is not in CNF

34

