
1
COPYRIGHT 2019, THE UNIVERSITY OF MELBOURNE

Context-free Grammars

COMP90042 LECTURE 17

2

COMP90042 W.S.T.A. (S1 2019) L17

Syntactic Constituents

• Sequential models like HMMs (regular grammars, etc)
assume a linear structure

• But language clearly isn’t like that

[A man] [saw [a dog] [in [the park]]]

• Words group together to form syntactic constituents
* Can be replaced, or moved around as a unit

• Grammars allow us to formalize these intuitions
* Symbols correspond to syntactic constituents

3

COMP90042 W.S.T.A. (S1 2019) L17

Testing for constituency
• Various tests for constituency, based on linguistic

intuition, e.g.,
* Only constituents can answer a question

* Only constituents can be coordinated with others (of same type)

Trevor gave a lecture on grammar
Who gave the lecture on grammar? Trevor
Trevor did what with the lecture on grammar? *gave (fails)
What topic was Trevor’s lecture on? on grammar

Trevor gave a lecture on grammar and on parsing
Trevor gave a lecture on grammar and parsing
Trevor gave a lecture on grammar and a treatise on parsing
Trevor gave a lecture on grammar and ate a tasty pie

#Trevor gave a lecture on and a treatise about grammar
#Trevor gave a lecture on grammar and away a tasty pie

4

COMP90042 W.S.T.A. (S1 2019) L17

Outline

• The context-free grammar formalism

• Parsing with CFGs

• Representing English with CFGs

5

COMP90042 W.S.T.A. (S1 2019) L17

Basics of Context-free grammars

• Symbols
* Terminal: word such as book
* Non-terminal: syntactic label such as NP or NN
* Convention to use upper and lower-case to distinguish, or

else “quotes” for terminals

• Productions (rules)

* Exactly one non-terminal on left-hand side (LHS)
* An ordered list of symbols on right-hand side (RHS)

— can be Terminals or Non-terminals

W → X Y Z

6

COMP90042 W.S.T.A. (S1 2019) L17

Regular expressions as CFGs

• Regular expressions match simple patterns
* E.g., [A-Z][a-z]* words starting with a capital

• Can rewrite as a grammar (“regular grammar”)
* S → U S → U LS
* U → “A” U → “B” … U → “Z”
* LS → L LS → L LS
* L → “a” L → “b” … L → “z”

• The class of regular languages is a subset of the
context-free languages, which are specified using a
CFG

7

COMP90042 W.S.T.A. (S1 2019) L17

CFGs vs regular grammars

• CFGs (and regexs) used to describe a set of strings,
aka a “language”

• Regular grammars
* describe a smaller class of languages
* can be parsed using finite state machines (FSA, FST)

• CFGs
* can describe hierarchical groupings
* requires more complex automata to parse (PDA)

• Context sensitive grammars are even more expressive
(and intractable)

8

COMP90042 W.S.T.A. (S1 2019) L17

Chomsky hierarchy

• CF languages more general
than RLs
* Allows representation of

recursive nesting

• Adequate for most constructions in natural language
* but not e.g., cross-serial dependencies in Swiss-German

images: https://en.wikipedia.org/wiki/Chomsky_hierarchy https://en.wikipedia.org/wiki/Cross-serial_dependencies

https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Cross-serial_dependencies

9

COMP90042 W.S.T.A. (S1 2019) L17

A simple CF grammar

Terminal symbols: rat, the, ate, cheese

Non-terminal symbols: S, NP, VP, DT, VBD, NN

Productions:
S → NP VP
NP → DT NN
VP → VBD NP
DT → the
NN → rat
NN → cheese
VBD → ate

10

COMP90042 W.S.T.A. (S1 2019) L17

Generating sentences with CFGs

Always start with S (the sentence/start symbol)

S

Apply a rule with S on LHS (S → NP VP), i.e substitute RHS

NP VP

Apply a rule with NP on LHS (NP → DT NN)

DT NN VP

Apply rule with DT on LHS (DT → the)

the NN VP

Apply rule with NN on LHS (NN → rat)

the rat VP

In each step we
rewrite the left-most
non-terminal

11

COMP90042 W.S.T.A. (S1 2019) L17

Generating sentences with CFGs

Apply rule with VP on LHS (VP → VBD NP)

the rat VBD NP

Apply rule with VBD on LHS (VBD → ate)

the rat ate NP

Apply rule with NP on LHS (NP → DT NN)

the rat ate DT NN

Apply rule with DT on LHS (DT → the)

the rat ate the NN

Apply rule with NN on LHS (NN → cheese)

the rat ate the cheese

No non-terminals
left, we’re done!

12

COMP90042 W.S.T.A. (S1 2019) L17

CFG trees

• Generation corresponds to a syntactic tree

• Non-terminals are internal nodes

• Terminals are leaves

• Parsing is the
reverse process

(S (NP (DT the)
(NN rat))

(VP (VBG ate)
(NP (DT the)

(NN cheese))))

13

COMP90042 W.S.T.A. (S1 2019) L17

Parse Ambiguity

• Often more than one tree can describe a string

• “While hunting in Africa, I shot an elephant in my
pajamas. How he got into my pajamas, I don't know.”
Animal Crackers (1930)

Example & figures: http://www.nltk.org/book/ch08.html

14

COMP90042 W.S.T.A. (S1 2019) L17

Parsing CFGs

• Parsing: given string, identify possible structures

• Brute force search is intractable for non-trivial
grammars
* Good solutions use dynamic programming

• Two general strategies
* Bottom-up

• Start with words, work up towards S
• CYK parsing

* Top-down
• Start with S, work down towards words
• Earley parsing (not covered)

15

COMP90042 W.S.T.A. (S1 2019) L17

The CYK parsing algorithm

• Convert grammar to Chomsky Normal Form (CNF)

• Fill in a parse table

• Use table to derive parse

• Convert result back to original grammar

16

COMP90042 W.S.T.A. (S1 2019) L17

Convert to Chomsky Normal Form

• Change grammar so all rules of form
A → B C or A → a

• Step 1: Convert rules of form
A → B c into pair of rules A → B X, X → c

* Not usually necessary in POS-based grammars

• Step 2: Convert rules A → B C D into A → B Y, Y → C D
* Usually necessary, but not for our toy grammar
* E.g., VP → VP NP NP

for ditransitive cases, “sold [her] [the book]”

• X, Y are new symbols we have introduced

17

COMP90042 W.S.T.A. (S1 2019) L17

CNF (cont)

• CNF disallows unary rules, A → B. Why?

• Imagine NP → S; and S → NP … leads to infinitely
many trees with same yield.

• If no cycles, can transform grammar, e.g.,
* if A → B and B → c and B → d then make new non-terminal

Z, with rules Z → c and Z → d; all instances of A in RHS of
other rules now also support Z.

* common occurrence in formal grammars, e.g., NP → NN,
VP → VB, where NN and VB are pre-terminals (POS tags),
and only rewrite as strings

18

COMP90042 W.S.T.A. (S1 2019) L17

CYK algorithm

•

• What role do i, j and k play?

• Why does this need CNF grammar?

• How to use table for checking acceptance? Finding tree?

JM3, Ch 11

19

COMP90042 W.S.T.A. (S1 2019) L17

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3] [1,4] [1,5]

[2,3] [2,4] [2,5]

[3,4] [3,5]

[4,5]

the rat ate the cheese

DT NP

NN

VBDS → NP VP
NP → DT NN
VP → VBD NP
DT → the
NN → rat
NN → cheese
VBD → ate

DT

NN

NP

VP

S

CYK by example

20

COMP90042 W.S.T.A. (S1 2019) L17

CYK: Retrieving The parses

• S in the top-left corner of parse table indicates
success

• To get parse(s), follow pointers back for each match

• Convert back from CNF by transforming new non-
terminals back to their original values
* E.g., if VP → VP NP NP was changed to

VP → VP NP+NP; NP+NP → NP NP
* If we have the latter two productions in tree, transform

tree back to top production

21

COMP90042 W.S.T.A. (S1 2019) L17

Parse table with backpointers

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3] [1,4] [1,5]

[2,3] [2,4] [2,5]

[3,4] [3,5]

[4,5]

the rat ate the cheese
DT NP

NN

VBD

S → NP VP
NP → DT NN
VP → VBD NP
DT → the
NN → rat
NN → cheese
VBD → ate

DT

NN

NP

VP

S

Split = 4;
NP → DT NN

Split = 1;
NP → DT NN

Split = 3;
VP → VBD NP

Split = 2;
S → NP VP

22

COMP90042 W.S.T.A. (S1 2019) L17

From Toy Grammars to Real Grammars

• Toy grammars with handful of productions good for
demonstration or extremely limited domains

• For real texts, we need real grammars

• Many thousands of production rules

23

COMP90042 W.S.T.A. (S1 2019) L17

Key Constituents in Penn Treebank

• Sentence (S)

• Noun phrase (NP)

• Verb phrase (VP)

• Prepositional phrase (PP)

• Adjective phrase (AdjP)

• Adverbial phrase (AdvP)

• Subordinate clause (SBAR)

24

COMP90042 W.S.T.A. (S1 2019) L17

Example PTB/0001

((S
(NP-SBJ
(NP (NNP Pierre) (NNP Vinken))
(, ,)
(ADJP
(NP (CD 61) (NNS years))
(JJ old))

(, ,))
(VP (MD will)
(VP (VB join)
(NP (DT the) (NN board))
(PP-CLR (IN as)
(NP (DT a) (JJ nonexecutive) (NN director)))

(NP-TMP (NNP Nov.) (CD 29))))
(. .)))

25

COMP90042 W.S.T.A. (S1 2019) L17

Example PTB/0001

• Some parts of PTB trees are often discarded
* grammatical roles: SBJ = subject, PRD = predicate
* traces: In NP-SBJ-1, the “1” is an index, referenced from the

*-1 terminal — i.e., the “naming” refers to Rudolf Agnew

• And some structure is added to NPs, which are flat

26

COMP90042 W.S.T.A. (S1 2019) L17

Basic English Sentence structures

• Declarative sentences (S → NP VP)
* The rat ate the cheese

• Imperative sentences (S → VP)
* Eat the cheese!

• Yes/no questions (S → VB NP VP)
* Did the rat eat the cheese?

• Wh-subject-questions (S → WH VP)
* Who ate the cheese?

• Wh-object-questions (S → WH VB NP VP)
* What did the rat eat?

27

COMP90042 W.S.T.A. (S1 2019) L17

English Noun phrases

• Pre-modifiers
* DT, CD, ADJP, NNP, NN
* E.g. the two very best Philly cheese steaks

• Post-modifiers
* PP, VP, SBAR
* A delivery from Bob coming today that I don’t want to miss

NP → DT? CD? ADJP? (NN|NNP)+ PP* VP? SBAR?

NP → PRP

28

COMP90042 W.S.T.A. (S1 2019) L17

Verb Phrases

• Auxiliaries
* MD, AdvP, VB, TO
* E.g should really have tried to wait

VP → (MD|VB|TO) AdvP? VP

• Arguments and adjuncts
* NP, PP, SBAR, VP, AdvP
* E.g told him yesterday that I was ready
* E.g. gave John a gift for his birthday to make amends

VP → VB NP? NP? PP* AdvP* VP? SBAR?

29

COMP90042 W.S.T.A. (S1 2019) L17

Other Constituents

• Prepositional phrase
* PP → IN NP in the house

• Adjective phrase
* AdjP → (AdvP) JJ really nice

• Adverb phrase
* AdvP → (AdvP) RB not too well

• Subordinate clause
* SBAR → (IN) S since I came here

• Coordination
* NP → NP CC NP; VP → VP CC VP; etc. Jack and Jill

• Complex sentences
* S → S SBAR; S → SBAR , S; etc. if he goes, I’ll go

30

COMP90042 W.S.T.A. (S1 2019) L17

A final word

• Context-free grammars can represent linguistic
structure

• There are relatively fast dynamic programming
algorithms to retrieve this structure

• But what about ambiguity?
* Extreme ambiguity will slow down parsing
* If multiple possible parses, which is best?

31

COMP90042 W.S.T.A. (S1 2019) L17

Required Reading

• J&M3 Ch. 10.1-10.3, 10.5, Ch. 11.1-11.2

