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Overview

• Languages and grammars

• Regular languages

• Finite state acceptors & transducers

• Modelling word morphology
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What is a “language”?

• How to characterize valid English?

* were I earliest thoughtlyless?
# colourless green ideas sleep furiously

It was the best of times, it was the worst of times,…

• Language = set of acceptable strings (e.g., sentences)

• Some examples
* binary strings of that start with 0 and end with 1

01, 001, 011, 0001, 0011, 0101, 0111, …
* sentences of English words that start with wh-word and end in ?

what ?, what is a dog ?, where are my pants ?, …
* strings {a, b} of even length
* HTML; your favourite programming language; …
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Formal Language Theory

• Used to define membership:
* is given string part of the language or not?

• Formal apparatus to answer this question 
automatically, using a grammar

• Today: regular languages

• Coming: context-free languages
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Key Operations

• Membership
* is the string part of the language? Y/N

• Scoring (requires weighting)
* relax question to graded membership, how good an 

example of language is the string? (returning a number)

• Transduction
* input one string, output another
* a form of translation, but used extensively

e.g., tagging = translating from words to tags
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Regular Languages

• Regular languages the simplest class of languages

• Accepted by regular expression which supports the 
following operations:
* Symbol drawn from alphabet, Σ
* Empty string, ε
* Concatenation of two regular expressions, RS
* Alternation of two regular expressions, R|S
* Kleene star for 0 or more repeats, R*
* Parenthesis () to define scope of operations
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Examples of Regular Languages

• Set of strings starting with 0 and ending in 1, with 
alphabet {0,1}
* 0(0|1)*1

• Question sentences: strings that start with wh-word, 
end in ?
* ((what)|(where)|(why)|(which)|(whose)|(whom)) Σ* ?

• Even length strings in {a, b}
* ((aa)|(ab)|(ba)|(bb))*

• In practice regex libraries include several shortcuts
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Properties of Regular Languages

• Closure: if we take regular languages L1 and L2 and 
merge them, is the resulting language regular?

• RLs are closed under the following:
* concatenation and union — follows from definition
* intersection: strings that are valid in both L1 and L2
* negation: strings that are not in L

• Extremely versatile! Can have RLs for different 
properties of language, and use them together
* core algorithms will still apply
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Finite State Acceptors

• RLs implemented by finite state acceptors, defined 
as:
* alphabet of input symbols, Σ
* set of states, Q
* start state, q0 ∈ Q
* final states, F ⊆ Q
* transition function

symbol and state → next state

• Accepts strings if there is path from q0 to a final state 
with transitions matching each symbol
* Djisktra’s shortest-path algorithm, O(V log V + E)



10

COMP90042 W.S.T.A. (S1 2019) L16

Example FSA

• Input alphabet {a, b}

• States {q0, q1}

• Start, final states q0, {q1}

• Transition function {(q0,a) → q0, (q0, b) → q1,
(q1,b) → q1}

• Note: seeing a in q1 
results in failure

• Accepts a*bb*

9.1. REGULAR LANGUAGES 193

q0start q1

a

b

b

Figure 9.1: State diagram for the finite state acceptor M1.

9.1.1 Finite state acceptors

A regular expression defines a regular language, but does not give an algorithm for de-
termining whether a string is in the language that it defines. Finite state automata are
theoretical models of computation on regular languages, which involve transitions be-
tween a finite number of states. The most basic type of finite state automaton is the finite
state acceptor (FSA), which describes the computation involved in testing if a string is
a member of a language. Formally, a finite state acceptor is a tuple M = (Q,⌃, q0, F, �),
consisting of:

• a finite alphabet ⌃ of input symbols;

• a finite set of states Q = {q0, q1, . . . , qn};

• a start state q0 2 Q;

• a set of final states F ✓ Q;

• a transition function � : Q ⇥ (⌃ [ {✏}) ! 2Q. The transition function maps from a
state and an input symbol (or empty string ✏) to a set of possible resulting states.

A path in M is a sequence of transitions, ⇡ = t1, t2, . . . , tN , where each ti traverses an
arc in the transition function �. The finite state acceptor M accepts a string ! if there is
an accepting path, in which the initial transition t1 begins at the start state q0, the final
transition tN terminates in a final state in Q, and the entire input ! is consumed.

Example

Consider the following FSA, M1.

⌃ ={a, b} [9.1]
Q ={q0, q1} [9.2]
F ={q1} [9.3]
� ={(q0, a) ! q0, (q0, b) ! q1, (q1, b) ! q1}. [9.4]

This FSA defines a language over an alphabet of two symbols, a and b. The transition
function � is written as a set of arcs: (q0, a) ! q0 says that if the machine is in state

Under contract with MIT Press, shared under CC-BY-NC-ND license.
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FSA for word morphology

• Morphology relates different word types, e.g., 
derivation
* grace (N) → graceful, gracefully, disgrace, disgracefully
* allure (N) → alluring, alluringly , unalluring
* but not *disallure, *allureful, *disallure, *ungrace etc

• (Fairly) consistent process— can we describe this as a 
regular language? 
* want to accept valid forms, and reject invalid ones 

[flagged with *]
* generalise to other words, e.g., nouns that behave like 

grace or allure
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FSA for word morphology196 CHAPTER 9. FORMAL LANGUAGE THEORY

q0start

qN1 qJ1 qA1

grace

-ful -ly

qneg qN2 qJ2 qA2dis-
grace -ful -ly

qN3 qJ3 qA3
allure -ing -ly

qJ4 qN4 qA4

fair

-ness

-ly

Figure 9.2: A finite state acceptor for a fragment of English derivational morphology. Each
path represents possible derivations from a single root form.

This FSA can be minimized to the form shown in Figure 9.3, which makes the gen-
erality of the finite state approach more apparent. For example, the transition from q0 to
qJ2 can be made to accept not only fair but any single-morpheme (monomorphemic) ad-
jective that takes -ness and -ly as suffixes. In this way, the finite state acceptor can easily
be extended: as new word stems are added to the vocabulary, their derived forms will be
accepted automatically. Of course, this FSA would still need to be extended considerably
to cover even this small fragment of English morphology. As shown by cases like music
! musical, athlete ! athletic, English includes several classes of nouns, each with its own
rules for derivation.

The FSAs shown in Figure 9.2 and 9.3 accept allureing, not alluring. This reflects a dis-
tinction between morphology — the question of which morphemes to use, and in what
order — and orthography — the question of how the morphemes are rendered in written
language. Just as orthography requires dropping the e preceding the -ing suffix, phonol-
ogy imposes a related set of constraints on how words are rendered in speech. As we will
see soon, these issues can be handled by finite state!transducers, which are finite state
automata that take inputs and produce outputs.

9.1.3 Weighted finite state acceptors

According to the FSA treatment of morphology, every word is either in or out of the lan-
guage, with no wiggle room. Perhaps you agree that musicky and fishful are not valid
English words; but if forced to choose, you probably find a fishful stew or a musicky trib-
ute preferable to behaving disgracelyful. Rather than asking whether a word is acceptable,
we might like to ask how acceptable it is. Aronoff (1976, page 36) puts it another way:

Jacob Eisenstein. Draft of October 15, 2018.
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q0start

qneg qN1 qJ1 qA1

dis-

grace -ful -ly

grace

qN2

allure

-ing

qJ2 qN3

fair
-ness

-ly

Figure 9.3: Minimization of the finite state acceptor shown in Figure 9.2.

“Though many things are possible in morphology, some are more possible than others.”
But finite state acceptors give no way to express preferences among technically valid
choices.

Weighted finite state acceptors (WFSAs) are generalizations of FSAs, in which each
accepting path is assigned a score, computed from the transitions, the initial state, and the
final state. Formally, a weighted finite state acceptor M = (Q,⌃,�, ⇢, �) consists of:

• a finite set of states Q = {q0, q1, . . . , qn};

• a finite alphabet ⌃ of input symbols;

• an initial weight function, � : Q ! R;

• a final weight function ⇢ : Q ! R;

• a transition function � : Q ⇥ ⌃ ⇥ Q ! R.

WFSAs depart from the FSA formalism in three ways: every state can be an initial
state, with score �(q); every state can be an accepting state, with score ⇢(q); transitions are
possible between any pair of states on any input, with a score �(qi,!, qj). Nonetheless,
FSAs can be viewed as a special case: for any FSA M we can build an equivalent WFSA
by setting �(q) = 1 for all q 6= q0, ⇢(q) = 1 for all q /2 F , and �(qi,!, qj) = 1 for all
transitions {(q1,!) ! q2} that are not permitted by the transition function of M .

The total score for any path ⇡ = t1, t2, . . . , tN is equal to the sum of these scores,

d(⇡) = �(from-state(t1)) +
NX

n

�(tn) + ⇢(to-state(tN )). [9.5]

A shortest-path algorithm is used to find the minimum-cost path through a WFSA for
string !, with time complexity O(E + V log V ), where E is the number of edges and V is
the number of vertices (Cormen et al., 2009).2

2Shortest-path algorithms find the path with the minimum cost. In many cases, the path weights are log

Under contract with MIT Press, shared under CC-BY-NC-ND license.
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Weighted FSA

• How to handle:
* unseen word forms? staycation, misspeak
* understandable non-words? #fishful, #musicky

• Graded measure of acceptability — weighted FSA 
adds/changes the following:
* start state weight function, λ: Q → ℝ
* final state weight function, ρ: Q → ℝ
* transition function, δ: (Q, Σ, Q) → ℝ
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WSFA shortest-path

• Total score of a path 𝜋 = 𝑡', … , 𝑡* now

𝜆 𝑡, + ∑/0'* 𝛿 𝑡/ + 𝜌 𝑡*
each t is an edge, so more formally using from &/or to states 
and edge label in score calculation

• Use shortest-path algorithm to find π with min. cost 
* O(V log V + E), as before
* often seek to maximise probability, so set 𝜆, 𝜌, 𝛿 to 

negative log probabilities and minimise

• Looks a bit like Viterbi for HMMs?
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N-gram LMs as WSFA

• Recall LM calculates score of string as follows
𝑃(𝑤', 𝑤6, .. 𝑤7) = ∏/0'

7 𝑃(𝑤/|𝑤/;') (bigram)

• Implemented as WSFA
* Σ = set of word types
* Q = Σ
* 𝜆 𝑞/ = −log 𝑃 𝑤' = 𝑖 𝑤, = □)
* 𝜌 𝑞/ = −log𝑃(𝑤7C' =∎ 𝑤7 = 𝑖

* 𝛿 𝑞/, 𝑤, 𝑞E = F − log𝑃 𝑤G = 𝑗 𝑤G;' = 𝑖) if 𝑤 = 𝑗
∞ otherwise

• How to extend to higher orders? HMMs?
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Finite State Transducers

• Often don’t want to just accept or score strings
* want to translate them into another language, correct 

grammar, parse their structure, etc

• Transducers add string output capability to FSAs
* includes an output alphabet
* and transitions now take input symbol and emit output 

symbol

• E.g., edit distance as WFST which takes one string, 
and outputs the other
* zero cost only if strings are identical
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Edit distance automata

9.1. REGULAR LANGUAGES 201

transition weight, which are themselves probabilities. The � operator is addition, so that
the total score is the sum of the scores (probabilities) for each path. This corresponds to
the probability under the interpolated bigram language model.

9.1.4 Finite state transducers

Finite state acceptors can determine whether a string is in a regular language, and weighted
finite state acceptors can compute a score for every string over a given alphabet. Finite
state transducers (FSTs) extend the formalism further, by adding an output symbol to each
transition. Formally, a finite state transducer is a tuple T = (Q,⌃,⌦,�, ⇢, �), with ⌦ repre-
senting an output vocabulary and the transition function � : Q⇥ (⌃[ ✏)⇥ (⌦[ ✏)⇥Q ! R
mapping from states, input symbols, and output symbols to states. The remaining ele-
ments (Q,⌃,�, ⇢) are identical to their definition in weighted finite state acceptors (sub-
section 9.1.3). Thus, each path through the FST T transduces the input string into an
output.

String edit distance

The edit distance between two strings s and t is a measure of how many operations are
required to transform one string into another. There are several ways to compute edit
distance, but one of the most popular is the Levenshtein edit distance, which counts the
minimum number of insertions, deletions, and substitutions. This can be computed by
a one-state weighted finite state transducer, in which the input and output alphabets are
identical. For simplicity, consider the alphabet ⌃ = ⌦ = {a, b}. The edit distance can be
computed by a one-state transducer with the following transitions,

�(q, a, a, q) = �(q, b, b, q) = 0 [9.12]
�(q, a, b, q) = �(q, b, a, q) = 1 [9.13]
�(q, a, ✏, q) = �(q, b, ✏, q) = 1 [9.14]
�(q, ✏, a, q) = �(q, ✏, b, q) = 1. [9.15]

The state diagram is shown in Figure 9.5.

For a given string pair, there are multiple paths through the transducer: the best-
scoring path from dessert to desert involves a single deletion, for a total score of 1; the
worst-scoring path involves seven deletions and six additions, for a score of 13.

The Porter stemmer

The Porter (1980) stemming algorithm is a “lexicon-free” algorithm for stripping suffixes
from English words, using a sequence of character-level rules. Each rule can be described

Under contract with MIT Press, shared under CC-BY-NC-ND license.
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qstart

a/a, b/b : 0

a/b, b/a : 1

a/✏, b/✏ : 1

✏/a, ✏/b : 1

Figure 9.5: State diagram for the Levenshtein edit distance finite state transducer. The
label x/y : c indicates a cost of c for a transition with input x and output y.

by an unweighted finite state transducer. The first rule is:

-sses ! -ss e.g., dresses ! dress [9.16]
-ies ! -i e.g., parties ! parti [9.17]
-ss ! -ss e.g., dress ! dress [9.18]

-s ! ✏ e.g., cats ! cat [9.19]

The final two lines appear to conflict; they are meant to be interpreted as an instruction
to remove a terminal -s unless it is part of an -ss ending. A state diagram to handle just
these final two lines is shown in Figure 9.6. Make sure you understand how this finite
state transducer handles cats, steps, bass, and basses.

Inflectional morphology

In inflectional morphology, word lemmas are modified to add grammatical information
such as tense, number, and case. For example, many English nouns are pluralized by the
suffix -s, and many verbs are converted to past tense by the suffix -ed. English’s inflectional
morphology is considerably simpler than many of the world’s languages. For example,
Romance languages (derived from Latin) feature complex systems of verb suffixes which
must agree with the person and number of the verb, as shown in Table 9.1.

The task of morphological analysis is to read a form like canto, and output an analysis
like CANTAR+VERB+PRESIND+1P+SING, where +PRESIND describes the tense as present
indicative, +1P indicates the first-person, and +SING indicates the singular number. The
task of morphological generation is the reverse, going from CANTAR+VERB+PRESIND+1P+SING
to canto. Finite state transducers are an attractive solution, because they can solve both
problems with a single model (Beesley and Karttunen, 2003). As an example, Figure 9.7
shows a fragment of a finite state transducer for Spanish inflectional morphology. The

Jacob Eisenstein. Draft of October 15, 2018.
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• Verb inflections in Spanish must match the subject in 
person & number

• Can we define finite state machine to accept any 
inflected form, and output infinitive + 
person/number?

FST for Inflectional Morphology

cantar to sing

1P singular yo canto I sing

2P singular tu cantas you sing

3P singular ella canta she sings

1P plural nostotros cantamos we sing

2P plural vosotros cantáis you sing

3P plural ellas cantan they sing
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start
c/c a/a n/n t/t

o/o

✏/+Noun ✏/+Masc ✏/+Sing

✏/a ✏/r ✏/+Verb o/+PresInd ✏/+1p ✏/+Sing

a/+PresInd

✏/+3p ✏/+Sing

Figure 9.7: Fragment of a finite state transducer for Spanish morphology. There are two
accepting paths for the input canto: canto+NOUN+MASC+SING (masculine singular noun,
meaning a song), and cantar+VERB+PRESIND+1P+SING (I sing). There is also an accept-
ing path for canta, with output cantar+VERB+PRESIND+3P+SING (he/she sings).

— failing to accept strings or transductions that are valid. For example, a pluralization
transducer that does not accept foot/feet would undergenerate. Suppose we “fix” the trans-
ducer to accept this example, but as a side effect, it now accepts boot/beet; the transducer
would then be said to overgenerate. If a transducer accepts foot/foots but not foot/feet, then
it simultaneously overgenerates and undergenerates.

Finite state composition

Designing finite state transducers to capture the full range of morphological phenomena
in any real language is a huge task. Modularization is a classic computer science approach
for this situation: decompose a large and unwieldly problem into a set of subproblems,
each of which will hopefully have a concise solution. Finite state automata can be mod-
ularized through composition: feeding the output of one transducer T1 as the input to
another transducer T2, written T2�T1. Formally, if there exists some y such that (x, y) 2 T1

(meaning that T1 produces output y on input x), and (y, z) 2 T2, then (x, z) 2 (T2 � T1).
Because finite state transducers are closed under composition, there is guaranteed to be
a single finite state transducer that T3 = T2 � T1, which can be constructed as a machine
with one state for each pair of states in T1 and T2 (Mohri et al., 2002).

Example: Morphology and orthography In English morphology, the suffix -ed is added
to signal the past tense for many verbs: cook!cooked, want!wanted, etc. However, English
orthography dictates that this process cannot produce a spelling with consecutive e’s, so
that bake!baked, not bakeed. A modular solution is to build separate transducers for mor-
phology and orthography. The morphological transducer TM transduces from bake+PAST
to bake+ed, with the + symbol indicating a segment boundary. The input alphabet of TM

includes the lexicon of words and the set of morphological features; the output alphabet
includes the characters a-z and the + boundary marker. Next, an orthographic transducer
TO is responsible for the transductions cook+ed ! cooked, and bake+ed ! baked. The input
alphabet of TO must be the same as the output alphabet for TM , and the output alphabet

Jacob Eisenstein. Draft of October 15, 2018.

FST for Spanish inflection

canto → canto +Noun +Masc +Sing

canto → cantar +Verb +PresInd +1P +Sign
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FST Composition
• Compose two FSTs by taking output of one FST, S, 

and giving this as input to FST T
* denoted S ⊙ T; and results in another FST
* can also compose FST with FSA, resulting in a FSA

• Allows development of different processes as FSTs, 
e.g.,
* morphological tagging
* orthographic/phonological changes (bake+ed → baked)
* translation (words or morphological tags)
* word order changes …
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But is language regular? 

• Sometimes… e.g.,
This is the house that Jack built.
This is the malt that lay in the house that Jack built.
This is the rat that ate the malt that lay in the house that Jack 
built.
This is the cat that killed the rat that ate the malt that lay in 
the house that Jack built.
This is the dog that worried the cat that killed the rat that ate
the malt that lay in the house that Jack built.
…

• Length is unbounded (recursive), but structure is 
local → can describe with FSA = Regular
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But is language regular?

• But not in general: centre embedding of relative clauses
* A man that a woman loves
* A man that a woman that a child knows loves
* …
* A man that a woman that a child that a bird that I heard saw

knows loves

• Need to remember the n subject nouns, to ensure n
verbs follow (and that they agree etc)
* can’t be done with finite number of states

• Requires (at least) context-free grammar (next lectures)



23

COMP90042 W.S.T.A. (S1 2019) L16

Summary

• Concept of a language, and grammar

• Regular languages

• Finite state automata: acceptors, transducers

• Closure properties

• Application to edit distance, morphology
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Reading

• Reading
* Eisenstein, Chapter 9, “Formal Language Theory”


