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Sequence Tagging: 
hidden Markov models

COMP90042 Lecture 15

The Markov Chain 377
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The Markov chain described above is also called the observable Markov model be-
cause the output of the process is the set of states at each time instance t, where each state
corresponds to an observable event iX . In other words, there is one-to-one correspondence
between the observable event sequence X and the Markov chain state sequence

1 2, , ns s s=S ! Consider a simple three-state Markov chain for the Dow Jones Industrial
average as shown in Figure 8.1. At the end of each day, the Dow Jones Industrial average
may correspond to one of the following states:

state 1 – up (in comparison to the index of previous day)
state 2 – down (in comparison to the index of previous day)
state 3 – unchanged (in comparison to the index of previous day)
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Figure 8.1 A Markov chain for the Dow Jones Industrial average. Three states represent up,
down, and unchanged respectively.

The parameter for this Dow Jones Markov chain may include a state-transition prob-
ability matrix
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and an initial state probability matrix



2

COMP90042 W.S.T.A. (S1 2019) L15

POS tagging recap

• Janet will back the bill

• Janet/NNP will/MB back/VP the/DT bill/NN

• Local classifier: prone to error propagation

• What about treating the full sequence as a “class”?
* Output: “NNP_MB_VP_DT_NN”

• Problems:
* Exponentially many combinations: |Tags|M ,for length M
* How to tag sequences of different lengths?
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A better approach

• Tagging is a sentence-level task but as humans we 
decompose it into small word-level tasks.
* Janet/NNP will/MB back/VP the/DT bill/NN

• Solution:
* Define a model that decomposes process into individual 

word level steps
* But that takes into account the whole sequence when 

learning and predicting (no error propagation)

• This is the idea of sequence labelling, and more 
general, structured prediction.
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A probabilistic model
• Goal: obtain best tag sequence t from sentence w

* !𝒕 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒕 𝑃 𝒕 𝒘

* !𝒕 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒕
+ 𝒘 𝒕 +(𝒕)

+(𝒘)
= 𝑎𝑟𝑔𝑚𝑎𝑥𝒕 𝑃 𝒘 𝒕 𝑃(𝒕)

[Bayes]

• Let’s decompose:
* 𝑃 𝒘 𝒕 = ∏/01

2 𝑃(𝑤/|𝑡/) [Prob. of a word depends only on the tag]

* 𝑃(𝒕) = ∏/01
2 𝑃(𝑡/|𝑡/61) [Prob. of a tag depends only on the previous tag]

• These are independence assumptions (remember Naïve 
Bayes? Language models?)

• This is a Hidden Markov Model (HMM)
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Hidden Markov model

!𝒕 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒕 𝑃 𝒘 𝒕 𝑃(𝒕)

𝑃 𝒘 𝒕 = 7
/01

2

𝑃(𝑤/|𝑡/)

𝑃(𝒕) = ∏/01
2 𝑃(𝑡/|𝑡/61)

• Why “Markov”?
* Because it assumes the sequence follows a Markov chain: 

probability of an event (tag) depends only on the previous 
event (last tag)

• Why “Hidden”?
* Because the events (tags) are not seen: goal is to find the best 

sequence
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HMMs - training

• Parameters are the individual probabilities 𝑃 𝑤/ 𝑡/) and 
𝑃(𝑡/|𝑡/61)
* Respectively, emission (O) and transition (A) probabilities

• Training uses Maximum Likelihood Estimation (MLE)
* In Naïve Bayes & n-gram LMs, this is done by simply counting 

word frequencies according to the class.

• We do exactly the same in HMMs!

* 𝑃 𝑙𝑖𝑘𝑒 𝑉𝐵 = >?@2A(BC,E/FG)
>?@2A(BC)

* 𝑃 𝑁𝑁 𝐷𝑇 = >?@2A(KL,MM)
>?@2A(KL)
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HMMs - training

• What about the first tag?
* Assume we have a symbol “<s>” that represents the start of your sentence.

𝑃 𝑁𝑁 < 𝑠 > =
𝑐𝑜𝑢𝑛𝑡(< 𝑠 >, 𝑁𝑁)
𝑐𝑜𝑢𝑛𝑡(< 𝑠 >)

• What about the last tag?
* Assume we have a symbol “</s>” that represents the end of sentence.

• What about unseen (word,tag) and (tag, previous) combinations?
* Smoothing techniques, like NB/n-gram LMs
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Transition Matrix
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Emission (observation) Matrix
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HMMs – prediction (decoding)

!𝒕 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒕 𝑃 𝒘 𝒕 𝑃 𝒕

= 𝑎𝑟𝑔𝑚𝑎𝑥𝒕 ∏/01
2 𝑃 𝑤/ 𝑡/ 𝑃(𝑡/|𝑡/61)

• Simple idea: for each word, take the tag that maximises
𝑃 𝑤/ 𝑡/ 𝑃(𝑡/|𝑡A61). Do it left-to-right, in greedy fashion.

• This is wrong! We are looking for argmax𝒕, not individual 
𝑎𝑟𝑔𝑚𝑎𝑥AZ terms.
* This is a local classifier: error propagation

• Correct way: take all possible tag combinations, evaluate 
them, take the max (like Naïve Bayes)
* Problem: exponential number of sequences.
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The Viterbi algorithm

• Dynamic Programming to the rescue!
* We can still proceed sequentially, as long as we careful.

• “can play” -> can/MD play/VB

• Best tag for “can” is easy: 𝑎𝑟𝑔𝑚𝑎𝑥A 𝑃 can 𝑡 𝑃(𝑡|<s>)
* We can do that because first “tag” is always “<s>”

• Suppose best tag for “can” is NN. To get the tag for “play”, we 
can take 𝑎𝑟𝑔𝑚𝑎𝑥A 𝑃 play 𝑡 𝑃 𝑡 NN but this is wrong.

• Instead, we keep track of scores for each tag for “can” and 
check what would happen if “can” had a different tag.
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The viterbi algorithm

Janet will back the bill

NNP

MD

VB

JJ

NN

RB

DT
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The viterbi algorithm

Janet will back the bill

NNP P(Janet|NNP) * 
P(NNP|<s>)

MD P(Janet|MD) * 
P(MD|<s>)

VB …

JJ …

NN …

RB …

DT …
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The viterbi algorithm

Janet will back the bill

NNP 0.000032 * 
0.2767

MD 0 * 0.0006

VB …

JJ …

NN …

RB …

DT …
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

MD 0

VB 0

JJ 0

NN 0

RB 0

DT 0
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

P(will|NNP) * 
P(NNP|tJanet) * 
s(tJanet|Janet)

MD 0 …

VB 0 …

JJ 0 …

NN 0 …

RB 0 …

DT 0 …
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

P(will|NNP) * 
P(NNP|tJanet) * 

s(tJanet|Janet)

MD 0 …

VB 0 …

JJ 0 …

NN 0 …

RB 0 …

DT 0 …

Calculate this for all tags, 
take the max.
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0 * 
P(NNP|tJanet) * 

s(tJanet|Janet)

MD 0 …

VB 0 …

JJ 0 …

NN 0 …

RB 0 …

DT 0 …
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0

MD 0 P(will|MD) * 
P(MD|tJanet) * 
s(tJanet|Janet)

VB 0 …

JJ 0 …

NN 0 …

RB 0 …

DT 0 …
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0

MD 0 3.004e-8

VB 0 …

JJ 0 …

NN 0 …

RB 0 …

DT 0 …
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0

MD 0 3.004e-8

VB 0 2.231e-13

JJ 0 0

NN 0 1.034e-10

RB 0 0

DT 0 0
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The iterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0

MD 0 3.004e-8

VB 0 2.231e-13

JJ 0 0

NN 0 1.034e-10

RB 0 0

DT 0 0
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0 0

MD 0 3.004e-8 0

VB 0 2.231e-13 P(back|VB) * 
P(VB|twill) * 

s(twill|will)

JJ 0 0

NN 0 1.034e-10

RB 0 0

DT 0 0
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0 0

MD 0 3.004e-8 0

VB 0 2.231e-13 MD: 1.6e-11
VB: 7.5e-19
NN: 9.7e-17

JJ 0 0

NN 0 1.034e-10

RB 0 0

DT 0 0
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0 0

MD 0 3.004e-8 0

VB 0 2.231e-13 MD: 1.6e-11
VB: 7.5e-19
NN: 9.7e-17

JJ 0 0

NN 0 1.034e-10

RB 0 0

DT 0 0
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0 0

MD 0 3.004e-8 0

VB 0 2.231e-13 1.6e-11

JJ 0 0

NN 0 1.034e-10

RB 0 0

DT 0 0
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0 0

MD 0 3.004e-8 0

VB 0 2.231e-13 1.6e-11

JJ 0 0 5.1e-15

NN 0 1.034e-10 5.4e-15

RB 0 0 5.3e-11

DT 0 0 0



28

COMP90042 W.S.T.A. (S1 2019) L15

The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0 0 2.5e-17

MD 0 3.004e-8 0 0

VB 0 2.231e-13 1.6e-11 0

JJ 0 0 5.1e-15 5.2e-16

NN 0 1.034e-10 5.4e-15 5.9e-18

RB 0 0 5.3e-11 0

DT 0 0 0 1.8e-12
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0 0 2.5e-17 0

MD 0 3.004e-8 0 0 0

VB 0 2.231e-13 1.6e-11 0 1.0e-20

JJ 0 0 5.1e-15 5.2e-16 0

NN 0 1.034e-10 5.4e-15 5.9e-18 2.0e-15

RB 0 0 5.3e-11 0 0

DT 0 0 0 1.8e-12 0



30

COMP90042 W.S.T.A. (S1 2019) L15

The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0 0 2.5e-17 0

MD 0 3.004e-8 0 0 0

VB 0 2.231e-13 1.6e-11 0 1.0e-20

JJ 0 0 5.1e-15 5.2e-16 0

NN 0 1.034e-10 5.4e-15 5.9e-18 2.0e-15

RB 0 0 5.3e-11 0 0

DT 0 0 0 1.8e-12 0
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The viterbi algorithm

Janet will back the bill

NNP 8.8544e-06
l

0 0 2.5e-17 0

MD 0 3.004e-8 0 0 0

VB 0 2.231e-13 1.6e-11 0 1.0e-20

JJ 0 0 5.1e-15 5.2e-16 0

NN 0 1.034e-10 5.4e-15 5.9e-18 2.0e-15

RB 0 0 5.3e-11 0 0

DT 0 0 0 1.8e-12 0
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The viterbi algorithm

Janet/NNP will/MD back/VB the/DT bill/NN

NNP 8.8544e-06
l

0 0 2.5e-17 0

MD 0 3.004e-8 0 0 0

VB 0 2.231e-13 1.6e-11 0 1.0e-20

JJ 0 0 5.1e-15 5.2e-16 0

NN 0 1.034e-10 5.4e-15 5.9e-18 2.0e-15

RB 0 0 5.3e-11 0 0

DT 0 0 0 1.8e-12 0
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The Viterbi algorithm

• Complexity: O(T2N), where T is the size of the tagset
and N is the length of the sequence.
* T * N matrix, each cell performs T operations.

• Why does it work?
* Because of the independence assumptions that 

decompose the problem (specifically, the Markov 
property). Without these, we cannot apply DP.
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Viterbi Pseudocode

• Good practice: work with log probabilities to prevent 
underflow (multiplications become sums)

• Vectorisation (use matrix-vector operations)

alpha = np.zeros(M, T)
for t in range(T):
alpha[1, t] = pi[t] * O[w[1], t]

for i in range(2, M):
for t_i in range(T): 
for t_last in range(T):  # t_last means t_{i-1}
s = alpha[i-1, t_last] * A[t_last, t_i] * O[w[i], t_i]
if s > alpha[i,t_i]:
alpha[i,t_i] = s
back[i,t_i] = t_last

best = np.max(alpha[M-1,:])
return backtrace(best, back)
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HMMs in practice

• We saw HMM taggers based on bigrams. State-of-
the-art use tag trigrams. 
* 𝑃(𝒕) = ∏/01

2 𝑃(𝑡/|𝑡/61, 𝑡/6b) Viterbi now O(T3N)

• Need to deal with sparsity: some tag trigram 
sequences might not be present in training data
* Backoff: 𝑃(𝑡/|𝑡/61, 𝑡/6b) = λd e𝑃(𝑡/|𝑡/61, 𝑡/6b) + λb e𝑃(𝑡/|𝑡/61) + λ1 e𝑃(𝑡/)

* λ1 + λb + λd = 1
* Can learn the weights using deleted interpolation.

• With additional features, reach 96.5% accuracy on Penn 
Treebank (Brants, 2000)
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Other variant Taggers

• HMM is generative, P(t, w), ‘creates’ the input

• allows for unsupervised HMMs: learn model without any tagged data!

• Discriminative models describe P(t | w) directly

• supports richer feature set, generally better accuracy when trained over 
large supervised datasets

• E.g., Maximum Entropy Markov Model (MEMM), Conditional random 
field (CRF), Connectionist Temporal Classification (CTC)

• Most deep learning models of sequences are discriminative (e.g., 
encoder-decoders for translation), similar to an MEMM
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HMMs in NLP

• HMMs are highly effective for part-of-speech tagging
- trigram HMM gets 96.5% accuracy (TnT)
- related models are state of the art

- MEMMs 97%
- CRFs 97.6%
- Deep CRF 97.9%

- English Penn Treebank tagging accuracy 
https://aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)

• Apply out-of-the box to other sequence labelling 
tasks
- named entity recognition, shallow parsing, alignment …
- In other fields: DNA, protein sequences, image lattices…

https://aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)
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A final word

• HMMs are a simple, yet effective way to perform 
sequence labelling.

• Can still be competitive, and fast. Natural baseline for 
other sequence labelling tasks.

• Main drawback: not very flexible in terms of feature 
representation, compared to MEMMs and CRFs.
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Readings

• JM3 Appendix A A.1-A.2, A.4

• See also E18, parts of Chapter 7

• References:
* Rabiner’s HMM tutorial http://tinyurl.com/2hqaf8
* Lafferty et al, Conditional random fields: Probabilistic 

models for segmenting and labeling sequence data (2001)

http://tinyurl.com/2hqaf8

