
Sequence Tagging: hidden Markov models

COMP90042 Lecture 15

POS tagging recap

- Janet will back the bill
- Janet/NNP will/MB back/VP the/DT bill/NN
- Local classifier: prone to error propagation
- What about treating the full sequence as a "class"?
 * Output: "NNP_MB_VP_DT_NN"
- Problems:
 - * Exponentially many combinations: |Tags|^M,for length M
 - * How to tag sequences of different lengths?

A better approach

- Tagging is a sentence-level task but as humans we decompose it into small word-level tasks.
 - * Janet/NNP will/MB back/VP the/DT bill/NN
- Solution:
 - Define a model that decomposes process into individual word level steps
 - But that takes into account the whole sequence when learning and predicting (no error propagation)
- This is the idea of sequence labelling, and more general, structured prediction.

A probabilistic model

• Goal: obtain best tag sequence **t** from sentence **w**

*
$$\hat{\boldsymbol{t}} = argmax_{\boldsymbol{t}} P(\boldsymbol{t}|\boldsymbol{w})$$

*
$$\hat{t} = argmax_t \frac{P(w|t)P(t)}{P(w)} = argmax_t P(w|t) P(t)$$

[Bayes]

Let's decompose:

* $P(\boldsymbol{w}|\boldsymbol{t}) = \prod_{i=1}^{n} P(w_i|t_i)$ [Prob. of a word depends only on the tag]

* $P(t) = \prod_{i=1}^{n} P(t_i | t_{i-1})$ [Prob. of a tag depends only on the previous tag]

- These are independence assumptions (remember Naïve Bayes? Language models?)
- This is a Hidden Markov Model (HMM)

Hidden Markov model

$$\hat{\boldsymbol{t}} = \operatorname{argmax}_{\boldsymbol{t}} P(\boldsymbol{w}|\boldsymbol{t}) P(\boldsymbol{t})$$
$$P(\boldsymbol{w}|\boldsymbol{t}) = \prod_{i=1}^{n} P(w_i|t_i)$$

$$P(\mathbf{t}) = \prod_{i=1}^{n} P(t_i | t_{i-1})$$

- Why "Markov"?
 - Because it assumes the sequence follows a Markov chain: probability of an event (tag) depends only on the previous event (last tag)
- Why "Hidden"?
 - Because the events (tags) are not seen: goal is to find the best sequence

HMMs - training

- Parameters are the individual probabilities $P(w_i|t_i)$ and $P(t_i|t_{i-1})$
 - * Respectively, emission (O) and transition (A) probabilities
- Training uses Maximum Likelihood Estimation (MLE)
 - In Naïve Bayes & n-gram LMs, this is done by simply counting word frequencies according to the class.
- We do exactly the same in HMMs!

*
$$P(like|VB) = \frac{count(VB,like)}{count(VB)}$$

* $P(NN|DT) = \frac{count(DT,NN)}{count(DT)}$

HMMs - training

- What about the first tag?
 - * Assume we have a symbol "<s>" that represents the start of your sentence. $P(NN| < s >) = \frac{count(< s >, NN)}{count(< s >)}$
- What about the last tag?
 - * Assume we have a symbol "</s>" that represents the end of sentence.
- What about unseen (word, tag) and (tag, previous) combinations?
 - Smoothing techniques, like NB/n-gram LMs

Transition Matrix

	NNP	MD	VB	JJ	NN	RB	DT
$\langle s \rangle$	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

Figure 10.5 The *A* transition probabilities $P(t_i|t_{i-1})$ computed from the WSJ corpus without smoothing. Rows are labeled with the conditioning event; thus P(VB|MD) is 0.7968.

Emission (observation) Matrix

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

Figure 10.6

Observation likelihoods *B* computed from the WSJ corpus without smoothing.

HMMs – prediction (decoding)

 $\hat{t} = argmax_t P(w|t) P(t)$

 $= argmax_t \prod_{i=1}^n P(w_i|t_i) P(t_i|t_{i-1})$

- Simple idea: for each word, take the tag that maximises $P(w_i|t_i)P(t_i|t_{t-1})$. Do it left-to-right, in *greedy* fashion.
- This is wrong! We are looking for argmax_t, not individual argmax_{ti} terms.
 - * This is a local classifier: error propagation
- Correct way: take all possible tag combinations, evaluate them, take the max (like Naïve Bayes)
 - Problem: exponential number of sequences.

- Dynamic Programming to the rescue!
 - * We can still proceed sequentially, as long as we careful.
- "can play" -> can/MD play/VB
- Best tag for "can" is easy: $argmax_t P(can|t)P(t|<s>)$
 - * We can do that because first "tag" is always "<s>"
- Suppose best tag for "can" is NN. To get the tag for "play", we can take argmax_t P(play|t)P(t|NN) but this is wrong.
- Instead, we keep track of scores for each tag for "can" and check what would happen if "can" had a different tag.

	Janet	will	back	the	bill
NNP					
MD					
VB					
11					
NN					
RB					
DT					

	Janet	will	back	the	bill
NNP	P(Janet NNP) * P(NNP <s>)</s>				
MD	P(Janet MD) * P(MD <s>)</s>				
VB					
JJ					
NN					
RB					
DT					

	Janet	will	back	the	bill
NNP	0.000032 * 0.2767				
MD	0 * 0.0006				
VB					
Jl					
NN					
RB					
DT					

	Janet	will	back	the	bill
NNP	8.8544e-06				
MD	0				
VB	0				
Jl	0				
NN	0				
RB	0				
DT	0				

	Janet	will	back	the	bill
NNP	8.8544e-06	P(will NNP) * P(NNP t _{Janet}) * s(t _{Janet} Janet)			
MD	0				
VB	0				
Jl	0				
NN	0				
RB	0				
DT	0				

	Janet	will	back	the	bill
NNP	8.854 4e 06	P(will NNP) * P(NNP t _{Janet}) * S(t _{Janet} Janet)			
MD	0	(.///	ate this for al	l tags,	
VB	0		ne max.		
Jl	0				
NN	0				
RB	0				
DT	0				

	Janet	will	back	the	bill
NNP	8.8544e-06	0 * P(NNP t _{Janet}) * s(t _{Janet} Janet)			
MD	0				
VB	0				
Jl	0				
NN	0				
RB	0				
DT	0				

	Janet	will	back	the	bill
NNP	8.8544e-06	0			
MD	0	P(will MD) * P(MD t _{Janet}) * s(t _{Janet} Janet)			
VB	0				
JÌ	0				
NN	0				
RB	0				
DT	0				

	Janet	will	back	the	bill
NNP	8.8544e-06	0			
MD	0	3.004e-8			
VB	0				
Jl	0				
NN	0				
RB	0				
DT	0				

	Janet	will	back	the	bill
NNP	8.8544e-06	0			
MD	0	3.004e-8			
VB	0	2.231e-13			
Jl	0	0			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0			
MD	0	3.004e-8			
VB	0	2.231e-13			
Jl	0	þ			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0		
MD	0	3.004e-8	0		
VB	0	2.231e-13	P(back VB) * P(VB t _{will}) * s(t _{will} will)		
Jl	0	0			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0		
MD	0	3.004e-8	0		
VB	0	2.231e-13	MD: 1.6e-11 VB: 7.5e-19 NN: 9.7e-17		
Jl	0	0			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0		
MD	0	3.004e-8	0		
VB	0	2.231e-13	MD: 1.6e-11 VB: 7.5e-19 NN: 9.7e-17		
JJ	0	0			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0		
MD	0	3.004e-8	0		
VB	0	2.231e-13	1 .6e-11		
Jl	0	0			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0		
MD	0	3.004e-8	0		
VB	0	2.231e-13	1.6e-11		
Jl	0	b	5.1e-15		
NN	0	1.034e-10	5.4e-15		
RB	0	0	5.3e-11		
DT	0	0	0		

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0	2.5e-17	
MD	0	3.0048-8	0	0	
VB	0	2.231e-13	1.6e-14	0	
Jl	0	0	5.1e-15	5.2e-16	
NN	0	1.034e-10	5.4e-15	5.9e-18	
RB	0	0	5.3e-11 📕		
DT	0	0	0	1.8e-12	

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0	2.5e-17	0
MD	0	3.0048-8	0	0	0
VB	0	2.231e-13	1.6e-14	0	1.0e-20
Jl	0	D	5.1e-15	5.2e-16	0
NN	0	1.034e-10	5.4e-15	5.9e-18	2.0e-15
RB	0	0	5.3e-11 📕	Q	0
DT	0	0	0	1.8e-12	0

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0	2.5e-17	0
MD	0	3.0048-8	0	0	0
VB	0	2.231e-13	1.6e-14	0	1.0e-20
Jl	0	þ	5.1e-15	5.2e-16	0
NN	0	1.034e-10	5.4e-15	5.9e-18	2.0e-15
RB	0	0	5.3e-11	à	0
DT	0	0	0	1.8e-12 🖌 🖌	0

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0	2.5e-17	0
MD	0	3.004e-8	0	0	0
VB	0	2.231e-13	1.6e-11	0	1.0e-20
Jl	0	0	5.1e-15	5.2e-16	0
NN	0	1.034e-10	5.4e-15	5.9e-18	2.0e-15
RB	0	0	5.3e-11	0	0
DT	0	0	0	1.8e-12 🖌	0

	Janet/NNP	will/MD	back/VB	the/DT	bill/NN
NNP	8.8544e-06	0	0	2.5e-17	0
MD	0	3.004e-8	0	0	0
VB	0	2.231e-13	1.6e-11	0	1.0e-20
]]	0	0	5.1e-15	5.2e-16	0
NN	0	1.034e-10	5.4e-15	5.9e-18	2.0e-15
RB	0	0	5.3e-11	0	0
DT	0	0	0	1.8e-12	0

- Complexity: O(T²N), where T is the size of the tagset and N is the length of the sequence.
 - * T * N matrix, each cell performs T operations.
- Why does it work?
 - Because of the independence assumptions that decompose the problem (specifically, the Markov property). Without these, we cannot apply DP.

Viterbi Pseudocode

```
alpha = np.zeros(M, T)
for t in range(T):
  alpha[1, t] = pi[t] * O[w[1], t]
for i in range(2, M):
  for t i in range(T):
    for t_last in range(T): # t_last means t_{i-1}
      s = alpha[i-1, t_last] * A[t_last, t_i] * O[w[i], t_i]
      if s > alpha[i,t_i]:
        alpha[i,t i] = s
       back[i,t i] = t last
best = np.max(alpha[M-1,:])
return backtrace(best, back)
```

- Good practice: work with log probabilities to prevent underflow (multiplications become sums)
- Vectorisation (use matrix-vector operations)

HMMs in practice

 We saw HMM taggers based on bigrams. State-ofthe-art use tag trigrams.

* $P(t) = \prod_{i=1}^{n} P(t_i | t_{i-1}, t_{i-2})$ Viterbi now O(T³N)

- Need to deal with sparsity: some tag trigram sequences might not be present in training data
 - * Backoff: $P(t_i|t_{i-1}, t_{i-2}) = \lambda_3 \hat{P}(t_i|t_{i-1}, t_{i-2}) + \lambda_2 \hat{P}(t_i|t_{i-1}) + \lambda_1 \hat{P}(t_i)$

*
$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

- * Can learn the weights using **deleted interpolation**.
- With additional features, reach 96.5% accuracy on Penn Treebank (Brants, 2000)

Other variant Taggers

- HMM is generative, P(t, w), 'creates' the input
 - allows for unsupervised HMMs: learn model without any tagged data!
- **Discriminative** models describe *P(t | w)* directly
 - supports richer feature set, generally better accuracy when trained over large supervised datasets
 - E.g., Maximum Entropy Markov Model (MEMM), Conditional random field (CRF), Connectionist Temporal Classification (CTC)
 - Most *deep learning* models of sequences are discriminative (e.g., encoder-decoders for translation), similar to an MEMM

HMMs in NLP

- HMMs are highly effective for part-of-speech tagging
 - trigram HMM gets 96.5% accuracy (TnT)
 - related models are state of the art
 - MEMMs 97%
 - CRFs 97.6%
 - Deep CRF 97.9%
 - English Penn Treebank tagging accuracy
 https://aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)
- Apply out-of-the box to other sequence labelling tasks
 - named entity recognition, shallow parsing, alignment ...
 - In other fields: DNA, protein sequences, image lattices...

A final word

- HMMs are a simple, yet effective way to perform sequence labelling.
- Can still be competitive, and fast. Natural baseline for other sequence labelling tasks.
- Main drawback: not very flexible in terms of feature representation, compared to MEMMs and CRFs.

Readings

- JM3 Appendix A A.1-A.2, A.4
- See also E18, parts of Chapter 7
- References:
 - * Rabiner's HMM tutorial <u>http://tinyurl.com/2hqaf8</u>
 - Lafferty et al, Conditional random fields: Probabilistic models for segmenting and labeling sequence data (2001)