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Language models

* Assign a probability to a sequence of words

* Framed as “sliding a window” over the sentence,
predicting each word from finite context to left

E.g., n =3, atrigram model
P(wy, wa, .. wp) = 121 P(Wi|wi_aw;_4)

* Training (estimation) from frequency counts

* Difficulty with rare events - smoothing
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LMs as classifiers

LMs can be considered simple classifiers, e.g. trigram

model
P(w;| w;_, = “cow”, w;_; = “eats”)

classifies the likely next word in a sequence.

Has a parameter for every
Wi—2, Wj—1, Wi

Can think of this as a specific type of classifier — one
with a simple parameterisation.
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POS tagging as sequence classification

POS tagging can also be framed as classification:

P(t;| w;_; = “cow”, w; = “eats”)
classifies the likely POS tag for “eats”.

Could use same parameterisation, with parameter for

every
Wi_1, Wj, t;

* Why not use a fancier classifier? (Neural net)

* Can we make better use of context? (Recurrence)
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Outline

Neural network fundamentals

“Feed-forward” & recurrent neural language
models
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Feed forward neural net LMs

* Use neural network “classifier” to model
P(w;|lw;_;w;_1)
* input features = the previous two words
* output class = the next word

 How to handle massive space of V words?
Embeddings!

* embed input context words

* transform in “hidden” space

* “un-embed” back to vocab space

* Neural network used to define transformations
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Feed forward neural net LM
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Why bother?

* Ngram LMs

* cheap to train (just compute counts)

* put too many parameters, problems with sparsity and
scaling to larger contexts

* don’t adequately capture properties of words (grammatical
and semantic similarity), e.g., film vs movie

* NNLMs more robust

* force words through low-dimensional embeddings

* automatically capture word properties, leading to more
robust estimates

* flexible: minor change to adapt to other tasks (tagging)
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Neural networks

“Deep” neural networks provide mechanism for learning
richer models.

Based on vector embeddings and compositional functions
over these vectors.

* Word embeddings capture grammatical and semantic

similarity “cows” ~ “sheep”, “eats” ~ “chews” etc.

* Vector composition can allow for combinations of features
to be learned (e.g., humans consume meat)

* Limit size of vector representation to keep model capacity
under control.
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Components of NN classifier

* NN = Neural Network

* a.k.a. artificial NN, deep learning, multilayer perceptron

* Composed of simple functions of vector-valued
Inputs

Fig JM3 Ch 8 10
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NN Units

* Each “unit” is a function

* given input X, computes real-value (scalar) h

h = tanh ijmj + b
J

* scales input (with weights, w) and adds offset (bias, b)

* applies non-linear function, such as logistic sigmoid,
hyperbolic sigmoid (tanh), or rectified linear unit

11
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Neural network components

* Typically have several hidden units, i.e.,

hz‘ — tanh sz’jfﬁj + bz

J

+ each with own weights (w;) and bias term (b,)

* can be expressed using matrix & vector operators

—

I — tanh (W:Z n E)

* where W is a matrix comprising the unit weight vectors,
and b is a vector of all the bias terms

* non-linear function applied element-wise

12
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ANN In pictures

* Pictorial representation of
a single unit, for computing
y from x

Typical networks have . ‘Q‘%"‘/l .
several units, and ) T KN TN,
additional layers ' @@
E.g., output layer, for v % //
classification target X, Xy ... Xy

Figs IM3 Ch 8 13
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Coupling the Output layer

* To make this into a classifier, need to produce a
classification output

* probabilities for the next word (of size |V|)

* Add another layer, which takes h as input, and maps
into | V| sized vector

e Softmax ensures probabilities >0 & sumto 1

i exp(m) eXp(Uz) exp(vm) _

Doiexp(vy)’ Yosexp(v) 0 Do exp(vg).

14
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Deep structures

* Can stack several hidden layers; e.g.,

1.

A WS

map from 1-hot words, w, to word embeddings, e (lookup)
transform e to hidden state h, (with non-linearity)
transform h, to hidden state h, (with non-linearity)

... repeat ...

transform h, , to output classification space y
(with softmax)

* Each layer typically fully-connected to next lower
layer, i.e., each unit is connected to all input elements

15
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Learning from Data

* How to learn the parameters from data?
* parameters = sets of weights, bias, embeddings

* Consider how well the model “fits” the training data,
in terms of the probability it assigns to the correct
output

+ e.g., L=]liz1 P(wi|w;_ow;_1)
* want to maximise total probability, L
* equivalently minimise -log L with respect to parameters

* Trained using gradient descent

* tools like tensorflow, pytorch, dynet use autodiff to

compute gradients automatically
16
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FF-NN-LM

i-th output = P(w, = i | context)
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FF-NN for Tagging

MEMM tagger takes as input:
* recent words w;_,, W;_1, W;

* recenttags t;_o, t;_1
And outputs: current tag t;

Frame as neural network with

* 5 inputs: 3 x word embeddings and 2 x tag embeddings

* 1 output: vector of size |T|, using softmax

Train to minimise
— Zi 10g P( L ‘Wi—z; Wi_1, Wi, Li—p, ti—1)

18
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FF-NN for tagging

P(tag i = “NN” | context)

T softmax
000 @
tanh
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words . . . . . g
Word i-2 = “one” Word i-1 = “small” Word i = “step” Tag i-2 = “CD” Tag i-1 = “JJ”
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Recurrent NNLMS

* What if we structure the network differently, e.g.,
according to sequence with Recurrent Neural
Networks (RNNs)

2: compute 4. compute
new hidden  new hidden

ho h ho hs

\ \ \ \
1: te \\ \\ \\ \\
.. genera N wl \ w2 \ wS \ o o o
first word . N N S
\ \ \
\ \ \ \_J
% wl é w2 é w3 . ) )

3: generate  5: generate
next word next word

Figure: E18, p 154
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Recurrent NNLMS

Start with
*+ initial hidden state h,

For each word, w;,, in order j=1..m

+ embed word to produce vector, e;
+ compute hidden h; = tanh(W e; +V h;_; + b)
* compute output P(w;, 1) = softmax(U h; + c)

Train such to minimise ),; —log P(w;)
* to learn parameters W, V, U, b, ¢, h,

Adapt to tagging, e.g., using two RNNs, one for words
and one for tags; and tags as outputs

21
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RNNSs

* Canresults in very “deep” networks,

+ great for capturing long fragments: in theory, no limit on
context

* difficult to train due to gradient explosion or vanishing

* Variant RNNs designed to behave better:
Gated Recurrent Units (GRU),

Long Short-Term Memory (LSTM)

* High computational cost with many classes
(e.g., #vocab)

* negative sampling or hierarchical softmax over outputs

22



COMP90042 W.S.T.A. (S1 2019)

L12

Bidirectional RNNS

* Tagging can be benefit from context to left and right
* easy: use two RNNs, left-to-right and right-to-left

Lm—1 Lm Lm+1

* Often used as word encoding in other tasks, e.g., POS,
translation, summarisation, sentence classification

23
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Final words

* NNet models
* Robust to word variation, typos, etc
* Excellent generalization, especially RNNs

* Flexible — forms the basis for many other models

* Cons

+* Much slower than counts... but GPU acceleration

* Lots of classes (e.g., vocabulary)
* Not good for rare words... but pre-training on big corpora

* Data hungry, not so good on tiny data sets

24
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Required Reading

* E18, 6.3 (skip 6.3.1), 7.6
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