Neural sequence models

COMP90042 Lecture 12

THE UNIVERSITY OF

MELBOURNEL

COPYRIGHT 2019, THE UNIVERSITY OF MELBOURNE

COMP90042 W.S.T.A. (S1 2019) L12

Language models

* Assign a probability to a sequence of words

* Framed as “sliding a window” over the sentence,
predicting each word from finite context to left

E.g., n =3, atrigram model
P(wy, wa, .. wp) = 121 P(Wi|wi_aw;_4)

* Training (estimation) from frequency counts

* Difficulty with rare events - smoothing

COMP90042 W.S.T.A. (S1 2019) L12

LMs as classifiers

LMs can be considered simple classifiers, e.g. trigram

model
P(w;| w;_, = “cow”, w;_; = “eats”)

classifies the likely next word in a sequence.

Has a parameter for every
Wi—2, Wj—1, Wi

Can think of this as a specific type of classifier — one
with a simple parameterisation.

COMP90042 W.S.T.A. (S1 2019) L12

POS tagging as sequence classification

POS tagging can also be framed as classification:

P(t;| w;_; = “cow”, w; = “eats”)
classifies the likely POS tag for “eats”.

Could use same parameterisation, with parameter for

every
Wi_1, Wj, t;

* Why not use a fancier classifier? (Neural net)

* Can we make better use of context? (Recurrence)

COMP90042 W.S.T.A. (S1 2019)

L1

Outline

Neural network fundamentals

“Feed-forward” & recurrent neural language
models

COMP90042 W.S.T.A. (S1 2019)

L12

Feed forward neural net LMs

* Use neural network “classifier” to model
P(w;|lw;_;w;_1)
* input features = the previous two words
* output class = the next word

 How to handle massive space of V words?
Embeddings!

* embed input context words

* transform in “hidden” space

* “un-embed” back to vocab space

* Neural network used to define transformations

L12

COMP90042 W.S.T.A. (S1 2019)

Feed forward neural net LM

(m)d
4 Xewyos
‘Paguiaun
_I
I
(-
O
© O
(-
=
O
A
(dny00))
Buippaquwe
=

JO}09A J0U-| Se F'm

(dnyo0))
Buippaquwa

1009/ J0Y-| SE ¢'m

COMP90042 W.S.T.A. (S1 2019) L12

Why bother?

* Ngram LMs

* cheap to train (just compute counts)

* put too many parameters, problems with sparsity and
scaling to larger contexts

* don’t adequately capture properties of words (grammatical
and semantic similarity), e.g., film vs movie

* NNLMs more robust

* force words through low-dimensional embeddings

* automatically capture word properties, leading to more
robust estimates

* flexible: minor change to adapt to other tasks (tagging)

COMP90042 W.S.T.A. (S1 2019) L12

Neural networks

“Deep” neural networks provide mechanism for learning
richer models.

Based on vector embeddings and compositional functions
over these vectors.

* Word embeddings capture grammatical and semantic

similarity “cows” ~ “sheep”, “eats” ~ “chews” etc.

* Vector composition can allow for combinations of features
to be learned (e.g., humans consume meat)

* Limit size of vector representation to keep model capacity
under control.

COMP90042 W.S.T.A. (S1 2019) L12

Components of NN classifier

* NN = Neural Network

* a.k.a. artificial NN, deep learning, multilayer perceptron

* Composed of simple functions of vector-valued
Inputs

Fig JM3 Ch 8 10

COMP90042 W.S.T.A. (S1 2019)

L12

NN Units

* Each “unit” is a function

* given input X, computes real-value (scalar) h

h = tanh ijmj + b
J

* scales input (with weights, w) and adds offset (bias, b)

* applies non-linear function, such as logistic sigmoid,
hyperbolic sigmoid (tanh), or rectified linear unit

11

COMP90042 W.S.T.A. (S1 2019) L12

Neural network components

* Typically have several hidden units, i.e.,

hz‘ — tanh sz’jfﬁj + bz

J

+ each with own weights (w;) and bias term (b,)

* can be expressed using matrix & vector operators

—

I — tanh (W:Z n E)

* where W is a matrix comprising the unit weight vectors,
and b is a vector of all the bias terms

* non-linear function applied element-wise

12

COMP90042 W.S.T.A. (S1 2019)

L12

ANN In pictures

* Pictorial representation of
a single unit, for computing
y from x

Typical networks have . ‘Q‘%"‘/l .
several units, and) T KN TN,
additional layers ' @@
E.g., output layer, for v % //
classification target X, Xy ... Xy

Figs IM3 Ch 8 13

COMP90042 W.S.T.A. (S1 2019) L12

Coupling the Output layer

* To make this into a classifier, need to produce a
classification output

* probabilities for the next word (of size |V|)

* Add another layer, which takes h as input, and maps
into | V| sized vector

e Softmax ensures probabilities >0 & sumto 1

i exp(m) eXp(Uz) exp(vm) _

Doiexp(vy)’ Yosexp(v) 0 Do exp(vg).

14

COMP90042 W.S.T.A. (S1 2019)

L12

Deep structures

* Can stack several hidden layers; e.g.,

1.

A WS

map from 1-hot words, w, to word embeddings, e (lookup)
transform e to hidden state h, (with non-linearity)
transform h, to hidden state h, (with non-linearity)

... repeat ...

transform h, , to output classification space y
(with softmax)

* Each layer typically fully-connected to next lower
layer, i.e., each unit is connected to all input elements

15

COMP90042 W.S.T.A. (S1 2019) L12

Learning from Data

* How to learn the parameters from data?
* parameters = sets of weights, bias, embeddings

* Consider how well the model “fits” the training data,
in terms of the probability it assigns to the correct
output

+ e.g., L=]liz1 P(wi|w;_ow;_1)
* want to maximise total probability, L
* equivalently minimise -log L with respect to parameters

* Trained using gradient descent

* tools like tensorflow, pytorch, dynet use autodiff to

compute gradients automatically
16

COMP90042 W.S.T.A. (S1 2019) L12

FF-NN-LM

i-th output = P(w, = i | context)

A
softmax
(o000 e o0 ‘e 000)
1 7 A DY
/ Vs , \
/ / most| computation here \
/ / \
I ! \
/ I \
/ I |
I
)] tanh !
| . (e ee ee) |
I /
I /
| /
| /
\ /

C(W;_,H_‘ S o C(Wt_z) C(W;_l) . -’ s
(ee® ---@) ... (060 ...0) (ee® .- 0)
A A A

Table ‘.~ \~~ MatI’IX C "(
!oog—up shared parameters
n = o across words -
index for wy_, 41 index for w;_» index for w;_

Bengio et al, 2003
17

COMP90042 W.S.T.A. (S1 2019)

L12

FF-NN for Tagging

MEMM tagger takes as input:
* recent words w;_,, W;_1, W;

* recenttags t;_o, t;_1
And outputs: current tag t;

Frame as neural network with

* 5 inputs: 3 x word embeddings and 2 x tag embeddings

* 1 output: vector of size |T|, using softmax

Train to minimise
— Zi 10g P(L ‘Wi—z; Wi_1, Wi, Li—p, ti—1)

18

COMP90042 W.S.T.A. (S1 2019)

L12

FF-NN for tagging

P(tag i = “NN” | context)

T softmax
000 @
tanh
000 0
000 O 00 O 000 o 000 O (000 ©
A A A A A
Embedding matrix - =¥| _ _ ———===%__ _ _ _ ___ > * - - _ - - Emge;ﬁ(jjing rmatrix
sharedacross =~ -~~~ sha eta aSc 0SS
words g
Word i-2 = “one” Word i-1 = “small” Word i = “step” Tag i-2 = “CD” Tag i-1 = “JJ”

19

COMP90042 W.S.T.A. (S1 2019)

L12

Recurrent NNLMS

* What if we structure the network differently, e.g.,
according to sequence with Recurrent Neural
Networks (RNNs)

2: compute 4. compute
new hidden new hidden

ho h ho hs

\ \ \ \
1: te \\ \\ \\ \\
.. genera N wl \ w2 \ wS \ o o o
first word . N N S
\ \ \
\ \ \ _J
% wl é w2 é w3 .))

3: generate 5: generate
next word next word

Figure: E18, p 154

20

COMP90042 W.S.T.A. (S1 2019)

L12

Recurrent NNLMS

Start with
*+ initial hidden state h,

For each word, w;,, in order j=1..m

+ embed word to produce vector, e;
+ compute hidden h; = tanh(W e; +V h;_; + b)
* compute output P(w;, 1) = softmax(U h; + c)

Train such to minimise),; —log P(w;)
* to learn parameters W, V, U, b, ¢, h,

Adapt to tagging, e.g., using two RNNs, one for words
and one for tags; and tags as outputs

21

COMP90042 W.S.T.A. (S1 2019) L12

RNNSs

* Canresults in very “deep” networks,

+ great for capturing long fragments: in theory, no limit on
context

* difficult to train due to gradient explosion or vanishing

* Variant RNNs designed to behave better:
Gated Recurrent Units (GRU),

Long Short-Term Memory (LSTM)

* High computational cost with many classes
(e.g., #vocab)

* negative sampling or hierarchical softmax over outputs

22

COMP90042 W.S.T.A. (S1 2019)

L12

Bidirectional RNNS

* Tagging can be benefit from context to left and right
* easy: use two RNNs, left-to-right and right-to-left

Lm—1 Lm Lm+1

* Often used as word encoding in other tasks, e.g., POS,
translation, summarisation, sentence classification

23

COMP90042 W.S.T.A. (S1 2019) L12

Final words

* NNet models
* Robust to word variation, typos, etc
* Excellent generalization, especially RNNs

* Flexible — forms the basis for many other models

* Cons

+* Much slower than counts... but GPU acceleration

* Lots of classes (e.g., vocabulary)
* Not good for rare words... but pre-training on big corpora

* Data hungry, not so good on tiny data sets

24

COMP90042 W.S.T.A. (S1 2019)

L12

Required Reading

* E18, 6.3 (skip 6.3.1), 7.6

25

