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Neural sequence models
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Language models

• Assign a probability to a sequence of words

• Framed as “sliding a window” over the sentence, 
predicting each word from finite context to left

E.g., n = 3, a trigram model

!(#$, #%, .. #&) = ∏*+$
& !(#*|#*-%#*-$)

• Training (estimation) from frequency counts
* Difficulty with rare events → smoothing
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LMs as classifiers

LMs can be considered simple classifiers, e.g. trigram 
model

! "# "#$% = “()"”,w-$. = “/0ts”)
classifies the likely next word in a sequence. 

Has a parameter for every
"#$%, w-$., "#

Can think of this as a specific type of classifier — one 
with a simple parameterisation.
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POS tagging as sequence classification

POS tagging can also be framed as classification: 
! "# $#%& = “)*$”,w. = “/0"1”)

classifies the likely POS tag for “eats”.

Could use same parameterisation, with parameter for 
every 

$#%&, w., "#
• Why not use a fancier classifier? (Neural net)

• Can we make better use of context? (Recurrence)
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Outline

Neural network fundamentals

“Feed-forward” & recurrent neural language 
models
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Feed forward neural net LMs

• Use neural network “classifier” to model 
!(#$ #$%&#$%'
* input features = the previous two words 

* output class = the next word

• How to handle massive space of V words? 
Embeddings!
* embed input context words

* transform in “hidden” space

* “un-embed” back to vocab space

• Neural network used to define transformations
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Feed forward neural net LM 
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Why bother?

• Ngram LMs
* cheap to train (just compute counts)

* but too many parameters, problems with sparsity and 
scaling to larger contexts

* don’t adequately capture properties of words (grammatical 
and semantic similarity), e.g., film vs movie

• NNLMs more robust
* force words through low-dimensional embeddings

* automatically capture word properties, leading to more 
robust estimates

* flexible: minor change to adapt to other tasks (tagging)
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Neural networks

“Deep” neural networks provide mechanism for learning 

richer models.

Based on vector embeddings and compositional functions 

over these vectors.

• Word embeddings capture grammatical and semantic 

similarity “cows” ~ “sheep”, “eats” ~ “chews” etc. 

• Vector composition can allow for combinations of features 

to be learned (e.g., humans consume meat)

• Limit size of vector representation to keep model capacity 

under control.
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Components of NN classifier

• NN = Neural Network
* a.k.a. artificial NN, deep learning, multilayer perceptron

• Composed of simple functions of vector-valued 
inputs

8 CHAPTER 8 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

purely linear, but modern networks are made up of units with non-linearities like
sigmoids), but at some point the name stuck.

Simple feed-forward networks have three kinds of nodes: input units, hidden
units, and output units. Fig. 8.8 shows a picture.

x1 x2
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xdin
…

h3
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b

…
U
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y2 ydout

Figure 8.8 Caption here

The input units are simply scalar values just as we saw in Fig. 8.2.
The core of the neural network is the hidden layer formed of hidden units,hidden layer

each of which is a neural unit as described in Section 8.1, taking a weighted sum of
its inputs and then applying a non-linearity. In the standard architecture, each layer
is fully-connected, meaning that each unit in each layer takes as input the outputsfully-connected

from all the units in the previous layer, and there is a link between every pair of units
from two adjacent layers. Thus each hidden unit sums over all the input units.

Recall that a single hidden unit has parameters w (the weight vector) and b (the
bias scalar). We represent the parameters for the entire hidden layer by combining
the weight wi and bias bi for each unit i into a single weight matrix W and a single
bias vector b for the whole layer (see Fig. 8.8). Each element Wi j of the weight
matrix W represents the weight of the connection from the ith input unit xi to the the
jth hidden unit h j.

The advantage of using a single matrix W for the weights of the entire layer is
that now that hidden layer computation for a feedforward network can be done very
efficiently with simple matrix operations. In fact, the computation only has three
steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function f (such as the sigmoid, tanh, or rectified linear
activation function defined above).

The output of the hidden layer, the vector h, is thus the following, assuming the
sigmoid function s :

h = s(Wx+b) (8.9)

Notice that we’re apply the s function here to a vector, while in Eq. 8.4 it was
applied to a scalar. We’re thus allowing s(·), and indeed any activation function
f (·), to apply to a vector element-wise, so f [z1,z2,z3] = [ f (z1), f (z2), f (z3)].

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll have din represent the number of inputs, so x is a vector of
real numbers of dimensionality din, or more formally x 2 Rdin . The hidden layer

Fig JM3 Ch 8
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NN Units

• Each “unit” is a function

* given input x, computes real-value (scalar) h

* scales input (with weights, w) and adds offset (bias, b)

* applies non-linear function, such as logistic sigmoid, 

hyperbolic sigmoid (tanh), or rectified linear unit

h = tanh

0

@
X

j

wjxj + b

1

A
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Neural network components

• Typically have several hidden units, i.e.,

* each with own weights (wi) and bias term (bi)
* can be expressed using matrix & vector operators

* where W is a matrix comprising the unit weight vectors, 
and b is a vector of all the bias terms

* non-linear function applied element-wise

hi = tanh

0

@
X

j

wijxj + bi

1

A

<latexit sha1_base64="ycZ3WqqJWBuAagBkWXR1mn8/Wfs=">AAACGnicbVDLSgMxFM3UV62vqks3wSJUhDItgroQim5cVrC20ClDJs100mYyQ3JHLUP/w42/4saFijtx49+YPhbaeiBwOOdcbu7xYsE12Pa3lVlYXFpeya7m1tY3Nrfy2zu3OkoUZXUaiUg1PaKZ4JLVgYNgzVgxEnqCNbz+5chv3DGleSRvYBCzdki6kvucEjCSm68ELsfn2AEiA+wI5kMROzoJ3R6+d1PeG+IHQ4+wZ2KO4t0ADt18wS7ZY+B5Up6SApqi5uY/nU5Ek5BJoIJo3SrbMbRTooBTwYY5J9EsJrRPuqxlqCQh0+10fNsQHxilg/1ImScBj9XfEykJtR6EnkmGBAI9643E/7xWAv5pO+UyToBJOlnkJwJDhEdF4Q5XjIIYGEKo4uavmAZEEQqmzpwpoTx78jypV0pnJfv6uFC9mLaRRXtoHxVRGZ2gKrpCNVRHFD2iZ/SK3qwn68V6tz4m0Yw1ndlFf2B9/QCsSZ+J</latexit><latexit sha1_base64="ycZ3WqqJWBuAagBkWXR1mn8/Wfs=">AAACGnicbVDLSgMxFM3UV62vqks3wSJUhDItgroQim5cVrC20ClDJs100mYyQ3JHLUP/w42/4saFijtx49+YPhbaeiBwOOdcbu7xYsE12Pa3lVlYXFpeya7m1tY3Nrfy2zu3OkoUZXUaiUg1PaKZ4JLVgYNgzVgxEnqCNbz+5chv3DGleSRvYBCzdki6kvucEjCSm68ELsfn2AEiA+wI5kMROzoJ3R6+d1PeG+IHQ4+wZ2KO4t0ADt18wS7ZY+B5Up6SApqi5uY/nU5Ek5BJoIJo3SrbMbRTooBTwYY5J9EsJrRPuqxlqCQh0+10fNsQHxilg/1ImScBj9XfEykJtR6EnkmGBAI9643E/7xWAv5pO+UyToBJOlnkJwJDhEdF4Q5XjIIYGEKo4uavmAZEEQqmzpwpoTx78jypV0pnJfv6uFC9mLaRRXtoHxVRGZ2gKrpCNVRHFD2iZ/SK3qwn68V6tz4m0Yw1ndlFf2B9/QCsSZ+J</latexit><latexit sha1_base64="ycZ3WqqJWBuAagBkWXR1mn8/Wfs=">AAACGnicbVDLSgMxFM3UV62vqks3wSJUhDItgroQim5cVrC20ClDJs100mYyQ3JHLUP/w42/4saFijtx49+YPhbaeiBwOOdcbu7xYsE12Pa3lVlYXFpeya7m1tY3Nrfy2zu3OkoUZXUaiUg1PaKZ4JLVgYNgzVgxEnqCNbz+5chv3DGleSRvYBCzdki6kvucEjCSm68ELsfn2AEiA+wI5kMROzoJ3R6+d1PeG+IHQ4+wZ2KO4t0ADt18wS7ZY+B5Up6SApqi5uY/nU5Ek5BJoIJo3SrbMbRTooBTwYY5J9EsJrRPuqxlqCQh0+10fNsQHxilg/1ImScBj9XfEykJtR6EnkmGBAI9643E/7xWAv5pO+UyToBJOlnkJwJDhEdF4Q5XjIIYGEKo4uavmAZEEQqmzpwpoTx78jypV0pnJfv6uFC9mLaRRXtoHxVRGZ2gKrpCNVRHFD2iZ/SK3qwn68V6tz4m0Yw1ndlFf2B9/QCsSZ+J</latexit>

~h = tanh
⇣
W~x+~b

⌘

<latexit sha1_base64="Afm6UMPq4LC1x8Gat7OzMGrc8+k=">AAACGnicbZBNS8NAEIY3flu/qh69LBZBEUpaBPUgFL14VLBWaErZbCfN0s0m7E6KJeR/ePGvePGg4k28+G/cfhzUOrDw8L47zMzrJ1IYdN0vZ2Z2bn5hcWm5sLK6tr5R3Ny6NXGqOdR5LGN95zMDUiioo0AJd4kGFvkSGn7vYug3+qCNiNUNDhJoRayrRCA4Qyu1i1WvDzwLc3pGPWQqpJ6EAPdpg46M+5wejsnPqadFN8SDdrHklt1R0WmoTKBEJnXVLn54nZinESjkkhnTrLgJtjKmUXAJecFLDSSM91gXmhYVi8C0stFtOd2zSocGsbZPIR2pPzsyFhkziOx6exHD0Pz1huJ/XjPF4KSVCZWkCIqPBwWppBjTYVC0IzRwlAMLjGthd6U8ZJpxtHEWbAiVvydPQ71aPi2710el2vkkjSWyQ3bJPqmQY1Ijl+SK1AknD+SJvJBX59F5dt6c9/HXGWfSs01+lfP5DW/RoAI=</latexit><latexit sha1_base64="Afm6UMPq4LC1x8Gat7OzMGrc8+k=">AAACGnicbZBNS8NAEIY3flu/qh69LBZBEUpaBPUgFL14VLBWaErZbCfN0s0m7E6KJeR/ePGvePGg4k28+G/cfhzUOrDw8L47zMzrJ1IYdN0vZ2Z2bn5hcWm5sLK6tr5R3Ny6NXGqOdR5LGN95zMDUiioo0AJd4kGFvkSGn7vYug3+qCNiNUNDhJoRayrRCA4Qyu1i1WvDzwLc3pGPWQqpJ6EAPdpg46M+5wejsnPqadFN8SDdrHklt1R0WmoTKBEJnXVLn54nZinESjkkhnTrLgJtjKmUXAJecFLDSSM91gXmhYVi8C0stFtOd2zSocGsbZPIR2pPzsyFhkziOx6exHD0Pz1huJ/XjPF4KSVCZWkCIqPBwWppBjTYVC0IzRwlAMLjGthd6U8ZJpxtHEWbAiVvydPQ71aPi2710el2vkkjSWyQ3bJPqmQY1Ijl+SK1AknD+SJvJBX59F5dt6c9/HXGWfSs01+lfP5DW/RoAI=</latexit><latexit sha1_base64="Afm6UMPq4LC1x8Gat7OzMGrc8+k=">AAACGnicbZBNS8NAEIY3flu/qh69LBZBEUpaBPUgFL14VLBWaErZbCfN0s0m7E6KJeR/ePGvePGg4k28+G/cfhzUOrDw8L47zMzrJ1IYdN0vZ2Z2bn5hcWm5sLK6tr5R3Ny6NXGqOdR5LGN95zMDUiioo0AJd4kGFvkSGn7vYug3+qCNiNUNDhJoRayrRCA4Qyu1i1WvDzwLc3pGPWQqpJ6EAPdpg46M+5wejsnPqadFN8SDdrHklt1R0WmoTKBEJnXVLn54nZinESjkkhnTrLgJtjKmUXAJecFLDSSM91gXmhYVi8C0stFtOd2zSocGsbZPIR2pPzsyFhkziOx6exHD0Pz1huJ/XjPF4KSVCZWkCIqPBwWppBjTYVC0IzRwlAMLjGthd6U8ZJpxtHEWbAiVvydPQ71aPi2710el2vkkjSWyQ3bJPqmQY1Ijl+SK1AknD+SJvJBX59F5dt6c9/HXGWfSs01+lfP5DW/RoAI=</latexit>



13

COMP90042 W.S.T.A. (S1 2019) L12

ANN in pictures

• Pictorial representation of 
a single unit, for computing 
y from x

• Typical networks have
several units, and
additional layers

• E.g., output layer, for
classification target

8.1 • UNITS 3

Figure 8.1 The sigmoid function takes a real value and maps it to the range [0,1]. Because
it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1.

value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 8.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vectors and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

8 CHAPTER 8 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

purely linear, but modern networks are made up of units with non-linearities like
sigmoids), but at some point the name stuck.

Simple feed-forward networks have three kinds of nodes: input units, hidden
units, and output units. Fig. 8.8 shows a picture.

x1 x2

h1 h2

y1

xdin
…

h3
hdh…

+1

b

…
U

W

y2 ydout

Figure 8.8 Caption here

The input units are simply scalar values just as we saw in Fig. 8.2.
The core of the neural network is the hidden layer formed of hidden units,hidden layer

each of which is a neural unit as described in Section 8.1, taking a weighted sum of
its inputs and then applying a non-linearity. In the standard architecture, each layer
is fully-connected, meaning that each unit in each layer takes as input the outputsfully-connected

from all the units in the previous layer, and there is a link between every pair of units
from two adjacent layers. Thus each hidden unit sums over all the input units.

Recall that a single hidden unit has parameters w (the weight vector) and b (the
bias scalar). We represent the parameters for the entire hidden layer by combining
the weight wi and bias bi for each unit i into a single weight matrix W and a single
bias vector b for the whole layer (see Fig. 8.8). Each element Wi j of the weight
matrix W represents the weight of the connection from the ith input unit xi to the the
jth hidden unit h j.

The advantage of using a single matrix W for the weights of the entire layer is
that now that hidden layer computation for a feedforward network can be done very
efficiently with simple matrix operations. In fact, the computation only has three
steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function f (such as the sigmoid, tanh, or rectified linear
activation function defined above).

The output of the hidden layer, the vector h, is thus the following, assuming the
sigmoid function s :

h = s(Wx+b) (8.9)

Notice that we’re apply the s function here to a vector, while in Eq. 8.4 it was
applied to a scalar. We’re thus allowing s(·), and indeed any activation function
f (·), to apply to a vector element-wise, so f [z1,z2,z3] = [ f (z1), f (z2), f (z3)].

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll have din represent the number of inputs, so x is a vector of
real numbers of dimensionality din, or more formally x 2 Rdin . The hidden layer

Figs JM3 Ch 8
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• To make this into a classifier, need to produce a 

classification output 

* probabilities for the next word (of size |V|)

• Add another layer, which takes h as input, and maps 

into |V| sized vector

• Softmax ensures probabilities >0 & sum to 1

Coupling the Output layer


exp(v1)P
i exp(vi)

,
exp(v2)P
i exp(vi)

, . . .
exp(vm)P
i exp(vi)

�
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Deep structures

• Can stack several hidden layers; e.g.,

1. map from 1-hot words, w, to word embeddings, e (lookup)

2. transform e to hidden state h1 (with non-linearity)

3. transform h1 to hidden state h2 (with non-linearity)

4. … repeat …
5. transform hn, to output classification space y 

(with softmax)

• Each layer typically fully-connected to next lower 

layer, i.e., each unit is connected to all input elements
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Learning from Data

• How to learn the parameters from data? 

* parameters = sets of weights, bias, embeddings

• Consider how well the model “fits” the training data, 

in terms of the probability it assigns to the correct 

output

* e.g., L = ∏"#$
% &(("|("*+("*$)

* want to maximise total probability, L

* equivalently minimise -log L with respect to parameters

• Trained using gradient descent

* tools like tensorflow, pytorch, dynet use autodiff to 

compute gradients automatically
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FF-NN-LM
BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

. . . . . .. . .

. . . . . .

. . . . . .

across words

most  computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

Bengio et al, 2003
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FF-NN for Tagging

• MEMM tagger takes as input:
* recent words !"#$, !"#&, !"
* recent tags '"#$, '"#&

• And outputs: current tag '"
• Frame as neural network with

* 5 inputs: 3 x word embeddings and 2 x tag embeddings
* 1 output: vector of size |T|, using softmax

• Train to minimise
−∑" log-( '"|!"#$, !"#&, !", '"#$, '"#&)
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FF-NN for tagging
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Recurrent NNLMS

• What if we structure the network differently, e.g., 

according to sequence with Recurrent Neural 

Networks (RNNs)
134 CHAPTER 6. LANGUAGE MODELS

h0 h1 h2 h3 · · ·

x1 x2 x3 · · ·

w1 w2 w3 · · ·

Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

The first insight behind neural language models is to treat word prediction as a dis-
criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is
a word, and u is the context, which depends on the previous words. Rather than directly
estimating the word probabilities from (smoothed) relative frequencies, we can treat treat
language modeling as a machine learning problem, and estimate parameters that maxi-
mize the log conditional probability of a corpus.

The second insight is to reparametrize the probability distribution p(w | u) as a func-
tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.25]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-
ability distribution is properly normalized. This vector of probabilities is equivalent to
applying the softmax transformation (see section 3.1) to the vector of dot-products,

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.26]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple
but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of October 15, 2018.

Figure: E18, p 154

1: generate 

first word

2: compute 

new hidden

3: generate 

next word

4: compute 

new hidden

5: generate 

next word
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Recurrent NNLMS 

• Start with
* initial hidden state h0

• For each word, wi, in order i=1..m
* embed word to produce vector, ei
* compute hidden !" = tanh() *" + , !"-. + /)
* compute output P(2"3.) = softmax(9 !" + :)

• Train such to minimise ∑" − log P(2")
* to learn parameters W, V, U, b, c, h0

• Adapt to tagging, e.g., using two RNNs, one for words 
and one for tags; and tags as outputs



22

COMP90042 W.S.T.A. (S1 2019) L12

RNNs

• Can results in very “deep” networks, 
* great for capturing long fragments: in theory, no limit on 

context

* difficult to train due to gradient explosion or vanishing

• Variant RNNs designed to behave better: 
Gated Recurrent Units (GRU), 
Long Short-Term Memory (LSTM)

• High computational cost with many classes 
(e.g., #vocab)
* negative sampling or hierarchical softmax over outputs
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Bidirectional RNNS

• Tagging can be benefit from context to left and right 
* easy: use two RNNs, left-to-right and right-to-left

• Often used as word encoding in other tasks, e.g., POS, 
translation, summarisation, sentence classification

7.6. NEURAL SEQUENCE LABELING 169

ym�1 ym ym+1

 �
hm�1

 �
hm

 �
hm+1

�!
hm�1

�!
hm

�!
hm+1

xm�1 xm xm+1

Figure 7.4: Bidirectional LSTM for sequence labeling. The solid lines indicate computa-
tion, the dashed lines indicate probabilistic dependency, and the dotted lines indicate the
optional additional probabilistic dependencies between labels in the biLSTM-CRF.

� and ⌘, as well as the parameters of the RNN. This model is called the LSTM-CRF, due
to its combination of aspects of the long short-term memory and conditional random field
models (Huang et al., 2015).

The LSTM-CRF is especially effective on the task of named entity recognition (Lam-
ple et al., 2016), a sequence labeling task that is described in detail in section 8.3. This
task has strong dependencies between adjacent tags, so structure prediction is especially
important.

7.6.2 Character-level models

As in language modeling, rare and unseen words are a challenge: if we encounter a word
that was not in the training data, then there is no obvious choice for the word embed-
ding xm. One solution is to use a generic unseen word embedding for all such words.
However, in many cases, properties of unseen words can be guessed from their spellings.
For example, whimsical does not appear in the Universal Dependencies (UD) English Tree-
bank, yet the suffix -al makes it likely to be adjective; by the same logic, unflinchingly is
likely to be an adverb, and barnacle is likely to be a noun.

In feature-based models, these morphological properties were handled by suffix fea-
tures; in a neural network, they can be incorporated by constructing the embeddings of
unseen words from their spellings or morphology. One way to do this is to incorporate
an additional layer of bidirectional RNNs, one for each word in the vocabulary (Ling
et al., 2015). For each such character-RNN, the inputs are the characters, and the output
is the concatenation of the final states of the left-facing and right-facing passes, �w =

Under contract with MIT Press, shared under CC-BY-NC-ND license.
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Final words

• NNet models
* Robust to word variation, typos, etc

* Excellent generalization, especially RNNs
* Flexible — forms the basis for many other models 

• Cons
* Much slower than counts… but GPU acceleration
* Lots of classes (e.g., vocabulary)

* Not good for rare words… but pre-training on big corpora

* Data hungry, not so good on tiny data sets
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Required Reading

• E18, 6.3 (skip 6.3.1), 7.6


