Part of speech tagging

COMP90042 Lecture 11

Authorship attribution revisited

• Training data:

- * "The lawyer convinced the jury." \rightarrow Sam
- * "Ruby travelled around Australia." \rightarrow Sam
- * "The hospital was cleaned by the janitor." \rightarrow Max
- ∗ "Lunch was served at 12pm." \rightarrow Max
- "The bookstore was opened by the manager." \rightarrow ?
- Similar structure (passive voice).
 - Not captured by simple BOW representations.
- How to ensure a computer knows/learns this?

Information extraction (teaser)

- Given this:
 - * "Brasilia, the Brazilian capital, was founded in 1960."
- Obtain this:
 - * capital(Brazil, Brasilia)
 - * founded(Brasilia, 1960)
- Many steps involved but first need to know nouns (Brasilia, capital), adjectives (Brazilian), verbs (founded) and numbers (1960).
- These are examples of **parts-of-speech** (POS).

Outline

Parts of speech, tagsets Automatic tagging

POS Open classes

Open vs **closed** classes: how readily do POS categories take on new words? Just a few open classes:

- Nouns
 - * Proper (Australia) versus common (wombat)
 - * Mass (rice) versus count (bowls)
- Verbs
 - * Rich inflection (go/goes/going/gone/went)
 - Auxiliary verbs (be, have, and do in English)
 - Transitivity (*wait* versus *hit* versus *give*)
 - number of arguments

POS Open classes

- Adjectives
 - * Gradable (happy) versus non-gradable (computational)
- Adverbs
 - * Manner (slowly)
 - * Locative (here)
 - * Degree (really)
 - * Temporal (yesterday)

POS Closed classes (for English)

- Prepositions (*in*, *on*, *with*, *for*, *of*, *over*,...)
 - * Regular (e.g. *on* the table)
 - * Particles (e.g. *turn it on*)
- Determiners
 - * Articles (*a*, *an*, *the*)
 - * Demonstratives (this, that, these, those)
 - * Quantifiers (each, every, some, two,...)
- Pronouns
 - * Personal (I, me, she,...)
 - * Possessive (my, our,...)
 - * Interrogative or Wh (who, what, ...)

POS Closed classes (for English)

Conjunctions

- * Coordinating (and, or, but)
- * Subordinating (*if*, *although*, *that*, ...)

Modals

- * Ability (*can, could*)
- * Permission (can, may)
- * Possibility (may, might, could, will)
- Necessity (must)
- And some more...

Ambiguity

- Many word types belong to multiple classes
- Compare:
 - * Time flies like an arrow
 - * Fruit flies like a banana

Time	flies	like	an	arrow
noun	verb	preposition	determiner	noun

Fruit	flies	like	а	banana
noun	noun	verb	determiner	noun

POS Ambiguity in news headlines

- British Left Waffles on Falkland Islands
- Juvenile Court to Try Shooting Defendant
- Teachers Strike Idle Kids
- Ban On Soliciting Dead in Trotwood
- Eye Drops Off Shelf

Tagsets

- A compact representation of POS information
 - * Usually ≤ 4 capitalized characters
 - Often includes inflectional distinctions
- Major English tagsets
 - Brown (87 tags)
 - * Penn Treebank (45 tags)
 - * CLAWS/BNC (61 tags)
 - * "Universal" (12 tags)
- At least one tagset for all major languages

Major Penn Treebank tags

- NN noun
- adjective JJ
- DT determiner
- IN preposition
- MD modal
- **RP** particle
- TO to

- VB verb
- **RB** adverb
 - CD cardinal number
 - PRP personal pronoun
 - CC coordinating conjunction
 - WH wh-pronoun

Penn treebank derived tags

NN: NNS (plural, *wombats*), NNP (proper, *Australia*), NNPS (proper plural, *Australians*)

VB: VB (infinitive, *eat*), VBP (1st/2nd person present, *eat*), VBZ (3rd person singular, *eats*), VBD (past tense, *ate*), VBG (gerund, *eating*), VBN (past participle, *eaten*)

JJ: JJR (comparative, *nicer*), JJS (superlative, *nicest*)

RB: RBR (comparative, *faster*), RBS (superlative, *fastest*)

PRP: PRP\$ (possessive, my)

WH: WH\$ (possessive, *whose*), WDT(*wh*-determiner, *who*), WRB (*wh*-adverb, *where*)

Tagged text Example

The/DT limits/NNS to/TO legal/JJ absurdity/NN stretched/VBD another/DT notch/NN this/DT week/NN when/WRB the/DT Supreme/NNP Court/NNP refused/VBD to/TO hear/VB an/DT appeal/VB from/IN a/DT case/NN that/WDT says/VBZ corporate/JJ defendants/NNS must/MD pay/VB damages/NNS even/RB after/IN proving/VBG that/IN they/PRP could/MD not/RB possibly/RB have/VB caused/VBN the/DT harm/NN ./.

Why automatically pos tag?

- Important for morphological analysis, e.g. lemmatisation
- For some applications, we want to focus on certain POS
 - * E.g. nouns are important for information retrieval, adjectives for sentiment analysis
- Very useful features for certain classification tasks
 - * E.g. genre classification
- POS tags can offer word sense disambiguation
 - * E.g. cross/NN cross/VB cross/JJ
- Can use them to create larger structures (parsing)

Automatic Taggers

- Rule-based taggers
- Statistical taggers
 - * Unigram tagger
 - * Classifier-based taggers
 - * Hidden Markov Model (HMM) taggers

Rule-based tagging

- Typically starts with a list of possible tags for each word
 - * From a lexical resource, or a corpus
- Often includes other lexical information, e.g. verb subcategorisation (its arguments)
- Apply rules to narrow down to a single tag
 - * E.g. If DT comes before word, then eliminate VB
 - Relies on some unambiguous contexts
- Large systems have 1000s of constraints

Unigram tagger

- Assign most common tag to each word type
- Requires a corpus of tagged words
- "Model" is just a look-up table
- But actually quite good, ~90% accuracy
 * Correctly resolves about 75% of ambiguity
- Often considered the baseline for more complex approaches

Classifier-Based tagging ("MEMM")

- Use a standard discriminative classifier (e.g. logistic regression, neural network), with features:
 - * Target word
 - Lexical context around the word
 - * Already classified tags in sentence
- Among the best sequential models
 - But can suffer from error propagation: wrong predictions from previous steps affect the next ones

Hidden Markov models

- A basic sequential (or structured) model
- Like sequential classifiers, use both previous tag and lexical evidence
- Unlike classifiers, treat previous tag(s) evidence and lexical evidence as independent from each other
 - * Less sparsity
 - * Fast algorithms for sequential prediction, i.e. finding the best tagging of entire word sequence
- Closely related to CRFs

Unknown words

- Huge problem in morphologically rich languages (e.g. Turkish)
- Can use hapax legomena (things we've seen only once) to best guess for things we've never seen before
- Can use sub-word representations to capture morphology (look for common affixes)

A final word

- Part of speech is a fundamental intersection between linguistics and automatic text analysis
- A fundamental task in NLP, provides useful information for many other applications
- Methods applied to it are typical of language tasks in general, e.g. probabilistic, sequential machine learning

Reading

• JM3 Ch. 8 8.1-8.3, 8.5.1