Distributional Semantics

COMP90042 Lecture 10

Lexical databases - Problems

- Manually constructed
 - * Expensive
 - * Human annotation can be biased and noisy
- Language is dynamic
 - * New words: slang, terminology, etc.
 - * New senses
- The Internet provides us with massive amounts of text. Can we use that to obtain word meanings?

Distributional semantics

- "You shall know a word by the company it keeps" (Firth)
- Document co-occurrence often indicative of topic (*document* as context)
 - * E.g. voting and politics
- Local context reflects a word's semantic class (word window as context)
 - * E.g. eat a pizza, eat a burger

Guessing meaning from context

- Learn unknown word from its usage
- E.g., tezgüino
- (14.1) A bottle of _____ is on the table.
- (14.2) Everybody likes _____.
- (14.3) Don't have _____ before you drive.
- (14.4) We make _____ out of corn.
- Look at other words in same (or similar) contexts

	(14.1)	(14.2)	(14.3)	(14.4)	•••
tezgüino	1	1	1	1	
loud	0	0	0	0	
motor oil	1	0	0	1	
tortillas	0	1	0	1	
choices	0	1	0	0	
wine	1	1	1	0	

Distributed and distributional semantics

- Distributed = represented as a numerical vector (in contrast to *symbolic*)
- Cover both count-based vs neural prediction-based methods

The Vector space model

- Fundamental idea: represent meaning as a vector
- Consider documents as context (ex: tweets)
- One matrix, two viewpoints
 - Documents represented by their words (web search)
 - * Words represented by their documents (text analysis)

	•••	state	fun	heaven	
•••					
425		0	1	0	
426		3	0	0	
427		0	0	0	
• • • • • •					

Manipulating the VSM

- Weighting the values
- Creating low-dimensional dense vectors
- Comparing vectors

Tf-idf

- Standard weighting scheme for information retrieval
- Also discounts common words

$$idf_w = \log \frac{|D|}{df_w}$$

	•••		country	nem	•••						
							•••	the	countr	hell	• • •
•••									У		
425		43	5	1							
						425		0	25.8	6.2	
426		24	1	0							
427		37	0	3		426		0	5.2	0	
•••						427		0	0	18.5	
	•			1	1	•••					
df		500	14	7				tf-idf	matrix	X	
	-	<i>tf</i> mat	rix					,,		_	8

Dimensionality reduction

- Term-document matrices are very *sparse*
- Dimensionality reduction: create shorter, denser vectors
- More practical (less features)
- Remove noise (less overfitting)

Singular value Decomposition

0.3

Truncating – latent semantic analysis

- Truncating U, Σ, and V to k dimensions produces best possible k rank approximation of original matrix
- So truncated, U_k (or V_k^T) is a new low dimensional representation of the word (or document)

Words as context

- Lists how often words appear with other words
 * In some predefined context (usually a window)
- The obvious problem with raw frequency: dominated by common words

	•••	the	country	hell	•••
•••					
state		1973	10	1	
£		51	0	0	
Iun		04		0	
heaven		55	1	3	
•••••					

Pointwise mutual information

For two events x and y, pointwise mutual information (PMI) comparison between the actual joint probability of the two events (as seen in the data) with the expected probability under the assumption of independence

$$PMI(x, y) = \log_2 \frac{p(x, y)}{p(x)p(y)}$$

Calculating PMI

	•••	the	country	hell	•••	Σ
•••						
state		1973	10	1		12786
fun		54	2	0		633
heaven		55	1	3		627
• • •						
Σ		1047519	3617	780		15871304

 $p(x,y) = count(x,y)/\Sigma x= state, y = country$ $p(x,y) = \sum_{x}/\Sigma p(x) = \sum_{y}/\Sigma p(x) = \frac{10}{15871304} = 6.3 \times 10^{-7}$ $p(x) = \frac{12786}{15871304} = 8.0 \times 10^{-4}$ $p(y) = \frac{3617}{15871304} = 2.3 \times 10^{-4}$ $PMI(x,y) = \log_2(6.3 \times 10^{-7})/((8.0 \times 10^{-4}) (2.3 \times 10^{-4}))$ = 1.78

PMI matrix

- PMI does a better job of capturing interesting semantics
 - * E.g. *heaven* and *hell*
- But it is obviously biased towards rare words
- And doesn't handle zeros well

	• • •	the	country	hell	••••
•••					
state		1.22	1.78	0.63	
fun		0.37	3.79	-inf	
heaven		0.41	2.80	6.60	
•••••					

PMI tricks

- Zero all negative values (PPMI)
 - * Avoid –inf and unreliable negative values
- Counter bias towards rare events
 - * Smooth probabilities

Similarity

- Regardless of vector representation, classic use of vector is comparison with other vector
- For IR: find documents most similar to query
- For Text Analysis: find synonyms, based on proximity in vector space
 - * automatic construction of lexical resources
 - * more generally, knowledge base population
- Use vectors as features in classifier more robust to different inputs (*movie* vs *film*)

Neural Word Embeddings

Learning distributional & distributed representations using "deep" classifiers

Skip-gram: Factored Prediction

- Neural network inspired approaches seek to learn vector representations of words and their contexts
- Key idea
 - Word embeddings should be similar to embeddings of neighbouring words
 - * And dissimilar to other words that don't occur nearby
- Using vector dot product for vector 'comparison'
 * u . v = ∑_j u_j v_j
- As part of a 'classifier' over a word and its immediate context

Skip-gram: Factored Prediction

- Framed as learning a classifier (a weird language model)...
 - * Skip-gram: predict words in local context surrounding given word P(he | rests) P(in | rests)
 P(life | rests) P(peace | rests)
 ... Bereft of life he rests in peace! If you hadn't nailed him ...

- CBOW: predict word in centre, given words in the local surrounding context
- Local context means words within L positions, L=2 above

P(rests | {he, in, life, peace})

Skip-gram model

P(in | rests)

Generates each word in context given centre word

... Bereft of life he rests in peace! If you hadn't nailed him ...

P(peace | rests)

Total probability defined as

P(he | rests)

 Where subscript denotes position in running text

$$\sum_{l \in -L, \dots, -1, 1, \dots, L} P(w_{t+l} | w_t)$$

 Using a logistic regression model

P(life | rests)

$$P(w_k|w_j) = \frac{\exp(c_{w_k} \cdot v_{w_j})}{\sum_{w' \in V} \exp(c_{w'} \cdot v_{w_j})}$$

Embedding parameterisation

 Two parameter matrices, with d-dimensional embedding for all words

 Words are numbered, e.g., by sorting vocabulary and using word location as its index

Skip-gram model

Training the skip-gram model

- Train to *maximise likelihood* of **raw text**
- Too slow in practice, due to normalisation over |V|
- Reduce problem to binary classification, distinguish real context words from "negative samples"

* words drawn randomly from V

Negative Sampling

$$P(+|w_k, w_j) = \frac{1}{1 + \exp(-c_k \cdot v_j)}$$
$$P(-|w_k, w_j) = 1 - \frac{1}{1 + \exp(-c_k \cdot v_j)}$$

... lemon, a [tablespoon of apricot jam, a] pinch ...
c1 c2 t c3 c4

positive examples +		negative examples -					
t	c	t	c	t	С		
apricot	tablespoon	apricot	aardvark	apricot	twelve		
apricot	of	apricot	puddle	apricot	hello		
apricot	jam	apricot	where	apricot	dear		
apricot	a	apricot	coaxial	apricot	forever		

Source: JM3 Ch 6; note mistake from reference, corrected above in red

Training illustration

- Iterative process (stochastic gradient descent)
 - * each step moves embeddings closer for context words
 - * and moves embeddings apart for noise samples

Evaluating word vectors

- Lexicon style tasks
 - * *WordSim-353* are pairs of nouns with judged relatedness
 - * SimLex-999 also covers verbs and adjectives
 - *TOEFL* asks for closest synonym as multiple choice
 …
- Test compatibility of word pairs using cosine similarity in vector space

Embeddings exhibit meaningful geometry

Word analogy task

- * Man is to King as Woman is to ???
- * France is to Paris as Italy is to ???
- Evaluate where in the ranked predictions the correct answer is, given tables of known relations

Evaluating word vectors

- Best evaluation is in other downstream tasks
 - * Use bag-of-word embeddings as a feature representation in a classifier (e.g., sentiment, QA, tagging etc.)
 - First layer of most deep learning models is to embed input text; use pre-trained word vectors as embeddings, possibly with further training ("fine-tuning") for specific task
- Recently "contextual word vectors" shown to work even better, ELMO (AI²), BERT (Google AI), ...

Pointers to software

Word2Vec

* C implementation of Skip-gram and CBOW <u>https://code.google.com/archive/p/word2vec/</u>

- GenSim
 - Python library with many methods include LSI, topic models and Skipgram/CBOW <u>https://radimrehurek.com/gensim/index.html</u>
- GLOVE
 - * <u>http://nlp.stanford.edu/projects/glove/</u>

Further reading

- Either one of:
 - * E18, 14-14.6 (skipping 14.4)
 - * JM3, Ch 6