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Lexical databases - Problems

• Manually constructed
* Expensive

* Human annotation can be biased and noisy

• Language is dynamic
* New words: slang, terminology, etc.
* New senses

• The Internet provides us with massive amounts of 
text. Can we use that to obtain word meanings?
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Distributional semantics

• “You shall know a word by the company it keeps” 

(Firth)

• Document co-occurrence often indicative of topic 

(document as context)

* E.g. voting and politics

• Local context reflects a word’s semantic class (word 
window as context)

* E.g. eat a pizza, eat a burger
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• Learn unknown word from its usage

• E.g., tezgüino

• Look at other words in same (or similar) contexts

From E18, Ch14, originally Lin

Guessing meaning from context
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Distributed and distributional 
semantics

Distributed = represented as a numerical vector (in 
contrast to symbolic)

Cover both count-based vs neural prediction-based 
methods
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The Vector space model

• Fundamental idea: represent meaning as a vector

• Consider documents as context (ex: tweets)

• One matrix, two viewpoints
* Documents represented by their words (web search)

* Words represented by their documents (text analysis)
… state fun heaven …

…
425 0 1 0
426 3 0 0
427 0 0 0
……
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Manipulating the VSM

• Weighting the values

• Creating low-dimensional dense vectors

• Comparing vectors
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Tf-idf

• Standard weighting scheme for information retrieval

• Also discounts common words
… the country hell …

…
425 43 5 1

426 24 1 0

427 37 0 3

…

df 500 14 7

… the countr
y

hell …

…
425 0 25.8 6.2

426 0 5.2 0

427 0 0 18.5

…

tf matrix
tf-idf matrix

!"#$ = log |*|"#$
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Dimensionality reduction

• Term-document matrices are very sparse

• Dimensionality reduction: create shorter, denser 
vectors

• More practical (less features)

• Remove noise (less overfitting)
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Singular value Decomposition

! = #Σ%&
A
(term-document matrix)

|D|

|V|

0 1 0
0 0 0
0 0 0

⋯
0
0
0

⋮ ⋱ ⋮
0 0 0 ⋯ 0

U
(new term matrix)

|V|

2.2 0.3
5.5 −2.8
−1.3 3.7

⋯
8.7
0.1
3.5

⋮ ⋱ ⋮
2.9 −2.1 ⋯ −1.9

m

VT
(new document matrix)

m

−0.2 4.0
−4.1 0.6
2.6 6.1

⋯
−1.3
−0.2
1.4

⋮ ⋱ ⋮
−1.9 −1.8 ⋯ 0.3

|D|

m=Rank(A)

Σ
(singular values)

m

m

9.1 0 0
0 4.4 0
0 0 2.3

⋯
0
0
0

⋮ ⋱ ⋮
0 0 0 ⋯ 0.1
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Truncating – latent semantic analysis

• Truncating U, Σ, and VT to k dimensions produces best 

possible k rank approximation of original matrix

• So truncated, Uk (or Vk
T ) is a new low dimensional 

representation of the word (or document)

• Typical values for k are 100-5000

U

|V|

2.2 0.3
5.5 −2.8
−1.3 3.7

⋯
−2.4
1.1
4.7

⋯
8.7
0.1
3.5

⋮ ⋱ ⋮ ⋱ ⋮
2.9 −2.1 ⋯ −3.3 ⋯ −1.9

m
Uk

|V|

2.2 0.3
5.5 −2.8
−1.3 3.7

⋯
−2.4
1.1
4.7

⋮ ⋱ ⋮
2.9 −2.1 ⋯ −3.3

kk
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Words as context

• Lists how often words appear with other words
* In some predefined context (usually a window)

• The obvious problem with raw frequency: dominated 
by common words

… the country hell …

…
state 1973 10 1

fun 54 2 0

heaven 55 1 3
……
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Pointwise mutual information

For two events x and y, pointwise mutual information 
(PMI) comparison between the actual joint probability 
of the two events (as seen in the data) with the 
expected probability under the assumption of 
independence

!"#(%, ') = log-
.(%, ')
. % .(')
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Calculating PMI

p(x,y) = count(x,y)/Σ
p(x) = Σx/ Σ
p(y) = Σy/ Σ

… the country hell … Σ

…
state 1973 10 1 12786

fun 54 2 0 633

heaven 55 1 3 627

…

Σ 1047519 3617 780 15871304

x= state, y = country
p(x,y) = 10/15871304 = 6.3 x 10-7

p(x) = 12786/15871304 = 8.0 x 10-4

p(y) = 3617/15871304 = 2.3 x 10-4

PMI(x,y) = log2(6.3 x 10-7)/((8.0 x 10-4) (2.3 x 10-4))
= 1.78
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PMI matrix

• PMI does a better job of capturing interesting 
semantics
* E.g. heaven and hell

• But it is obviously biased towards rare words

• And doesn’t handle zeros well
… the country hell …

…
state 1.22 1.78 0.63

fun 0.37 3.79 -inf

heaven 0.41 2.80 6.60
……
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PMI tricks

• Zero all negative values (PPMI)
* Avoid –inf and unreliable negative values

• Counter bias towards rare events
* Smooth probabilities
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Similarity

• Regardless of vector representation, classic use of 
vector is comparison with other vector

• For IR: find documents most similar to query

• For Text Analysis: find synonyms, based on proximity 
in vector space
* automatic construction of lexical resources

* more generally, knowledge base population

• Use vectors as features in classifier — more robust to 
different inputs (movie vs film)
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Neural Word Embeddings

Learning distributional & distributed
representations using 

“deep” classifiers



19

COMP90042 W.S.T.A. (S1 2019) L10

Skip-gram: Factored Prediction

• Neural network inspired approaches seek to learn 
vector representations of words and their contexts

• Key idea
* Word embeddings should be similar to embeddings of 

neighbouring words
* And dissimilar to other words that don’t occur nearby

• Using vector dot product for vector ‘comparison’
* u . v = ∑j uj vj

• As part of a ‘classifier’ over a word and its immediate 
context
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Skip-gram: Factored Prediction

• Framed as learning a classifier (a weird language model)…

* Skip-gram: predict words in local context surrounding given 

word

* CBOW: predict word in centre, given words in the local 

surrounding context

• Local context means words within L positions, L=2 above

… Bereft of life he rests in peace! If you hadn't nailed him …

P(life | rests)
P(he | rests) P(in | rests)

P(peace | rests)

P(rests | {he, in, life, peace})
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Skip-gram model

• Generates each word in context given centre word

• Total probability defined as
* Where subscript

denotes position in
running text

• Using a logistic
regression model

… Bereft of life he rests in peace! If you hadn't nailed him …

P(life | rests)
P(he | rests) P(in | rests)

P(peace | rests)

Y

l2�L,...,�1,1,...,L

P (wt+l|wt)

P (wk|wj) =
exp(cwk · vwj )P

w02V exp(cw0 · vwj )
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Embedding parameterisation

• Two parameter matrices, with d-dimensional embedding 
for all words

• Words are numbered, e.g., by sorting vocabulary and 
using word location as its index

19.6 • EMBEDDINGS FROM PREDICTION: SKIP-GRAM AND CBOW 19
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Figure 19.17 The word matrix W and context matrix C (with embeddings shown as row
vectors) learned by the skipgram model.
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Figure 19.18 The skip-gram model (Mikolov et al. 2013, Mikolov et al. 2013a).

is to compute P(wk|w j).
We begin with an input vector x, which is a one-hot vector for the current wordone-hot

w j. A one-hot vector is just a vector that has one element equal to 1, and all the other
elements are set to zero. Thus in a one-hot representation for the word w j, x j = 1,
and xi = 0 8i 6= j, as shown in Fig. 19.19.

0 0 0 0 0 … 0 0 0 0 1 0 0 0 0 0 … 0 0 0 0

w0 wj w|V|w1

Figure 19.19 A one-hot vector, with the dimension corresponding to word w j set to 1.

We then predict the probability of each of the 2C output words—in Fig. 19.18
that means the two output words wt�1 and wt+1— in 3 steps:

1. Select the embedding from W: x is multiplied by W , the input matrix, to give
the hidden or projection layer. Since each column of the input matrix W isprojection layer

just an embedding for word wt , and the input is a one-hot vector for w j, the
projection layer for input x will be h = v j, the input embedding for w j.

Fig 19.17, JM
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Skip-gram model
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Training the skip-gram model

• Train to maximise likelihood of raw text

• Too slow in practice, due to normalisation over |V|

• Reduce problem to binary classification, distinguish 
real context words from “negative samples”
* words drawn randomly from V

Source: JM3 Ch 6
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Negative Sampling
6.8 • WORD2VEC 21

6.8.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby.

Let’s start by considering a single piece of the training data, from the sentence
above:
... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot preserves
apricot or

negative examples -
t c t c
apricot aardvark apricot twelve
apricot puddle apricot hello
apricot where apricot dear
apricot coaxial apricot forever

For training a binary classifier we also need negative examples, and in fact skip-
gram uses more negative examples than positive examples, the ratio set by a param-
eter k. So for each of these (t,c) training instances we’ll create k negative samples,
each consisting of the target t plus a ‘noise word’. A noise word is a random word
from the lexicon, constrained not to be the target word t. The right above shows the
setting where k = 2, so we’ll have 2 negative examples in the negative training set
� for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w0 count(w0)a (6.31)

Setting a = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pa(w) > P(w). To visualize this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.32)

Given the set of positive and negative training instances, and an initial set of
embeddings, the goal of the learning algorithm is to adjust those embeddings such
that we

• Maximize the similarity of the target word, context word pairs (t,c) drawn
from the positive examples
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P (+|wk, wj) =
1

1 + exp(�ck · vj)

P (�|wk, wj) = 1� 1

1 + exp(�ck · vj)
<latexit sha1_base64="XsfZCQn69iq26DO7HO7ec8XKqH8="></latexit><latexit sha1_base64="XsfZCQn69iq26DO7HO7ec8XKqH8="></latexit><latexit sha1_base64="XsfZCQn69iq26DO7HO7ec8XKqH8="></latexit><latexit sha1_base64="XsfZCQn69iq26DO7HO7ec8XKqH8="></latexit>

Source: JM3 Ch 6; note mistake from reference, corrected above in red

jam
a
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Training illustration

• Iterative process (stochastic gradient descent)
* each step moves embeddings closer for context words

* and moves embeddings apart for noise samples

Source: JM3 Ch 6
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Evaluating word vectors

• Lexicon style tasks
* WordSim-353 are pairs of nouns with judged relatedness
* SimLex-999 also covers verbs and adjectives
* TOEFL asks for closest synonym as multiple choice
* …

• Test compatibility of word pairs using cosine 
similarity in vector space
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Embeddings exhibit meaningful geometry

• Word analogy task
* Man is to King as Woman is to ???

* France is to Paris as Italy is to ???

* Evaluate where in the ranked predictions the correct 
answer is, given tables of known relations
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Evaluating word vectors

• Best evaluation is in other downstream tasks
* Use bag-of-word embeddings as a feature representation in 

a classifier (e.g., sentiment, QA, tagging etc.)

* First layer of most deep learning models is to embed input 
text; use pre-trained word vectors as embeddings, possibly 
with further training (“fine-tuning”) for specific task

• Recently “contextual word vectors” shown to work 
even better, ELMO (AI2), BERT (Google AI), …
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Pointers to software

• Word2Vec
* C implementation of Skip-gram and CBOW

https://code.google.com/archive/p/word2vec/

• GenSim
* Python library with many methods include LSI, topic 

models and Skipgram/CBOW
https://radimrehurek.com/gensim/index.html

• GLOVE
* http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/index.html
http://nlp.stanford.edu/projects/glove/
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Further reading

• Either one of:
* E18, 14-14.6 (skipping 14.4)
* JM3, Ch 6


