Lectures
Office hour
Workshops from week 2 onwards. You will be assigned to one of the following timeslots
Monday | Tuesday | Wednesday | Thursday | Friday |
---|---|---|---|---|
9-10am Doug McDonell-502 | 4:15-5:15pm 221 Bouverie St-B113 | 11-12pm Elec. Engineering-121 | 2:15-3:15pm Alice Hoy-211 | 10-11am 221 Bouverie St-B117 |
11-12pm Elec. Engineering-121 | 5:15-6:15pm 221 Bouverie St-B132 | 3:15-4:15pm Alice Hoy-211 | 3:15-4:15pm Alice Hoy-210 | |
1:15-2:15pm 221 Bouverie St-B113 | 6:15-7:15pm Old Engineering-EDS4 | 5:15-6:15pm 221 Bouverie St-B132 | ||
5:15-6:15pm 221 Bouverie St-B132 | ||||
5:15-6:15pm 221 Bouverie St-B116 | ||||
6:15-7:15pm Old Engineering-EDS4 |
Please see the workshop page for each week's worksheet.
The instructor for the subject is A/Prof. Trevor Cohn. The senior tutor for the subject is Winn Chow and the head tutor for the subject is Ekaterina Vylomova. The tutors for the subject are Ekaterina Vylomova, Winn Chow, Navnita Nandakumar, Nitika Mathur, Xudong Han, Zenan Zhai, Shivashankar Subramanian and Andrei Shcherbakov.
QuestionsIf you have questions, please post your questions to the discussion forum in the LMS. Given the size of the subject, it is not practical to respond to individual emails, and besides any question you have is likely to be relevant to other students. Otherwise, please talk to your tutor, or direct your queries to Winn, winn.chow1@unimelb.edu.au, or Ekaterina, ekaterina.vylomova@unimelb.edu.au, the senior/head tutors.
Date | Topic | Materials |
---|---|---|
Tue 5/3 | Introduction and Preprocessing |
Slides:
WSTA_L1_introduction.pdf
Reading: JM3 Ch. 2 Notebook: WSTA_N1_preprocessing.ipynb |
Wed 6/3 | Information Retrieval with the vector space model |
Slides:
WSTA_L2_ir_vsm.pdf
Reading: IIR Chapter 6 Notebook: WSTA_N2_information_retrieval.ipynb |
Thu 7/3 | Workshop on python basics (optional) |
Worksheet:
week1-python-01.pdf
|
from Mon 11/3 | Workshop on preprocessing and information retrieval |
Worksheet:
workshop-02.pdf
solutions-02.pdf |
Tue 12/3 | Index compression and efficient query processing |
Slides:
WSTA_L3_IR.pdf
Reading: IIR Chapter 5 |
Wed 13/3 | Query completion and query expansion |
Slides:
WSTA_L4_IR.pdf
Reading: IIR Chapter 9 |
from Mon 18/3 | Workshop on index compression and efficient query processing |
Worksheet:
workshop-03.pdf
solutions-03.pdf |
Tue 19/3 | Index construction and advanced queries |
Slides:
WSTA_L5_IR.pdf
Reading: IIR Chapter 4 Liu, Learning to Rank for Information Retrieval , section 1.3: Learning to Rank |
Wed 20/3 | IR Evaluation and Learning to Rank |
Slides:
WSTA_L6_IR_evaluation.pdf
Reading: IIR Chapter 8 |
from Mon 25/3 | Workshop on index construction and IR evaluation |
Worksheet:
workshop-04.pdf
solutions-04.pdf |
Tue 26/3 | Text classification |
Slides:
WSTA_L7_text_classification.pdf
Reading: JM3 Ch. 4 JM3 Ch. 5 alternatively E18 2.1, 4-4.1, 4.3-4.4.1 Notebook: WSTA_N7_text_classification.ipynb |
Wed 27/3 | Ngram language modelling (error corrected in slides 28/3, again) |
Slides:
WSTA_L8_n-gram_language_models.pdf
Reading: E18 Ch 6 (skipping 6.3) Notebook: WSTA_N8_n-gram_language_models.ipynb |
from Mon 1/4 | Workshop on text classification and ngram language modelling |
Worksheet:
workshop-05.pdf
solutions-05.pdf |
Tue 2/4 | Lexical semantics |
Slides:
WSTA_L9_lexical_semantics.pdf
Reading: JM3 C.1-C.3 Notebook: WSTA_N9_lexical_semantics.ipynb |
Wed 3/4 | Distributional semantics |
Slides:
WSTA_L10_distributional_semantics.pdf
Reading: E18 14-14.6 (skipping 14.4) or JM3 Ch. 15 Notebook: WSTA_N10_distributional_semantics.ipynb |
from Mon 8/4 | Workshop on word semantics |
Worksheet:
workshop-06.pdf
solutions-06.pdf |
Tue 9/4 | Part of Speech Tagging |
Slides:
WSTA_L11_part_of_speech_tagging.pdf
Reading: JM3 8.1-8.3, 8.5.1 Notebook: WSTA_N11_part_of_speech_tagging.ipynb |
Wed 10/4 | Deep learning for language models and tagging |
Slides:
WSTA_L12_neural_sequence_models.pdf
Reading: E18 6.3 (skip 6.3.1), 7.6 |
from Mon 15/4 | Workshop on POS and deep learning for language models (schedule altered for Good Friday holiday) |
Worksheet:
workshop-07.pdf
solutions-07.pdf |
Tue 16/4 | Information Extraction |
Slides:
WSTA_L13_information_extraction.pdf
Reading: JM3 Ch. 17 - 17.2 |
Wed 17/4 | Question Answering |
Slides:
WSTA_L14_question_answering.pdf
Reading: JM3 Ch. 23 (skip 23.1.7, 23.2.3, 23.3) E18 17.5.2 (skipping methods) |
Mon 22/4 | Easter break | |
from Mon 29/4 | Workshop on information extraction and question answering |
Worksheet:
workshop-08.pdf
solutions-08.pdf |
Tue 30/4 | Probabilistic Sequence Modelling |
Slides:
WSTA_L15_probabilistic_sequence_models.pdf
Reading: JM3 Ch. A.1, A.2, A.4 Notebook: WSTA_N15_hidden_markov_models.ipynb |
Wed 1/5 | Language theory and automata |
Slides:
WSTA_L16_finite_state_automata.pdf
Reading: E18 Chapter 9.1 (skip starred parts) |
from Mon 6/5 | Workshop on HMM and FSA |
Worksheet:
workshop-09.pdf
solutions-09.pdf |
Tue 7/5 | Context-Free Grammars |
Slides:
WSTA_L17_context-free_grammars.pdf
Reading: JM3 Ch. 10.1-10.5 JM3 Ch. 11-11.2 Notebook: WSTA_N17_context-free_grammars.ipynb |
Wed 8/5 | Probabilistic Parsing (slides and notebook updated to correct mistakes, 8/5/19) |
Slides:
WSTA_L18_probabilistic_grammars.pdf
Reading: JM3 Ch. 12-12.6 Notebook: WSTA_N18_probabilistic_parsing.ipynb |
from Mon 13/5 | Workshop on CFG and probabilistic parsing |
Worksheet:
workshop-10.pdf
solutions-10.pdf |
Tue 14/5 | Dependency parsing |
Slides:
WSTA_L19_dependency.pdf
Reading: JM3 Ch. 13 |
Wed 15/5 | Discourse |
Slides:
WSTA_L20_discourse.pdf
Reading: JM2 Ch. 21 (21.1-21.3, 21.5-21.6) |
from Mon 20/5 | Workshop on dependency parsing and discourse |
Worksheet:
workshop-11.pdf
solutions-11.pdf |
Tue 21/5 | Machine Translation, word based models |
Slides:
WSTA_L21_machine_translation_word.pdf
Reading: JM2 Chapter 25, intro, 25.3-25.6 Notebook: WSTA_N21_machine_translation.ipynb |
Wed 22/5 | Machine translation, phrase based translation and neural encoder-decoder |
Slides:
WSTA_L22_machine_translation_phrase.pdf
Reading: JM2 Chapter 25, 25.7-25.9 E18 18.3–18.3.2 |
from Mon 27/5 | Workshop on machine translation |
Worksheet:
workshop-12.pdf
solutions-12.pdf |
Tue 28/5 | Memory-enhanced models for Discourse Understanding (Fei Liu) |
Slides:
WSTA_L23_memory.pdf
|
Wed 29/5 | Subject review |
Slides:
WSTA_L24_review.pdf
Reading: exams from previous years on the library website (2017 most relevant) see LMS for solutions to 2017 exam |